.PHONY: all
all: AST STPManager absrefine_counterexample to-sat simplifier printer c_interface extlib-constbv extlib-abc
-ifdef CRYPTOMINISAT
- $(MAKE) -C $(SRC)/sat cryptominisat
-endif
ifdef CRYPTOMINISAT2
$(MAKE) -C $(SRC)/sat cryptominisat2
endif
bm->CreateNode(NOT, query));
//solver instantiated here
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
MINISAT::Solver NewSolver;
#endif
helpstring +=
"-s : print function statistics\n";
- #if !defined CRYPTOMINISAT && !defined CRYPTOMINISAT2
+ #if !defined CRYPTOMINISAT2
helpstring +=
"--simplifying-minisat : use simplifying-minisat rather than minisat\n";
#endif
+++ /dev/null
-Niklas Eén
-Niklas Sörensson
-Mate SOOS <mate.soos@inrialpes.fr>
-Karsten Nohl <honk98@web.de>
-
-thanks to:
-- the authors' professors for their trust in their PhD students' capabilities
-- the gcc compiler team for the excellent C++ compiler
-- libstdc team for the excellent standard library
-- Bjarne Stroustrup for the excellent C++
+++ /dev/null
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a
-copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be included
-in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
-OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+++ /dev/null
-/***********************************************************************************
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-#include <time.h>
-#include <cstring>
-#include <algorithm>
-#include <vector>
-#include <iostream>
-#include <iomanip>
-#include <fstream>
-#include <sstream>
-using std::cout;
-using std::endl;
-using std::ofstream;
-
-#include "Logger.h"
-#include "fcopy.h"
-#include "SolverTypes.h"
-
-namespace MINISAT
-{
-
-#define MAX_VAR 1000000
-
-#define FST_WIDTH 10
-#define SND_WIDTH 35
-#define TRD_WIDTH 10
-
-Logger::Logger(int& _verbosity) :
- proof_graph_on(false),
- statistics_on(false),
-
- max_print_lines(20),
- uniqueid(1),
- level(0),
- begin_level(0),
- max_group(0),
-
- proof(NULL),
- proof_num(0),
-
- sum_conflict_depths(0),
- no_conflicts(0),
- no_decisions(0),
- no_propagations(0),
- sum_decisions_on_branches(0),
- sum_propagations_on_branches(0),
-
- verbosity(_verbosity)
-{
- runid /= 10;
- runid=time(NULL)%10000;
- if (verbosity >= 1) printf("RunID is: #%d\n",runid);
-
- sprintf(filename0,"proofs/%d-proof0.dot", runid);
-}
-
-// Adds a new variable to the knowledge of the logger
-void Logger::new_var(const Var var)
-{
- assert(var < MAX_VAR);
-
- if (varnames.size() <= var) {
- varnames.resize(var+1);
- times_var_propagated.resize(var+1);
- times_var_guessed.resize(var+1);
- depths_of_assigns_for_var.resize(var+1);
- }
-}
-
-// Resizes the groupnames and other, related vectors to accomodate for a new group
-void Logger::new_group(const uint group)
-{
- if (groupnames.size() <= group) {
- uint old_size = times_group_caused_propagation.size();
- groupnames.resize(group+1, "Noname");
- times_group_caused_conflict.resize(group+1);
- times_group_caused_propagation.resize(group+1);
- depths_of_propagations_for_group.resize(group+1);
- depths_of_conflicts_for_group.resize(group+1);
- for (uint i = old_size; i < times_group_caused_propagation.size(); i++) {
- times_group_caused_propagation[i] = 0;
- times_group_caused_conflict[i] = 0;
- }
- }
-
- max_group = std::max(group, max_group);
-}
-
-// Adds the new clause group's name to the information stored
-void Logger::set_group_name(const uint group, const char* name)
-{
- new_group(group);
-
- if (strlen(name) > SND_WIDTH-2) {
- cout << "A clause group name cannot have more than " << SND_WIDTH-2 << " number of characters. You gave '" << name << "', which is " << strlen(name) << " long." << endl;
- exit(-1);
- }
-
- if (groupnames[group].empty() || groupnames[group] == "Noname") {
- groupnames[group] = name;
- } else if (name != '\0' && groupnames[group] != name) {
- printf("Error! Group no. %d has been named twice. First, as '%s', then second as '%s'. Name the same group the same always, or don't give a name to the second iteration of the same group (i.e just write 'c g groupnumber' on the line\n", group, groupnames[group].c_str(), name);
- exit(-1);
- }
-}
-
-// sets the variable's name
-void Logger::set_variable_name(const uint var, const char* name)
-{
- if (!proof_graph_on && !statistics_on) return;
-
- if (strlen(name) > SND_WIDTH-2) {
- cout << "A variable name cannot have more than " << SND_WIDTH-2 << " number of characters. You gave '" << name << "', which is " << strlen(name) << " long." << endl;
- exit(-1);
- }
-
- new_var(var);
- varnames[var] = name;
-}
-
-void Logger::begin()
-{
- char filename[80];
- sprintf(filename, "proofs/%d-proof%d.dot", runid, proof_num);
-
- if (proof_num > 0) {
- if (proof_graph_on) {
- FileCopy(filename0, filename);
- proof = fopen(filename,"a");
- if (!proof) printf("Couldn't open proof file '%s' for writing\n", filename), exit(-1);
- }
- } else {
- history.growTo(10);
- history[level] = uniqueid;
-
- if (proof_graph_on) {
- proof = fopen(filename,"w");
- if (!proof) printf("Couldn't open proof file '%s' for writing\n", filename), exit(-1);
- fprintf(proof, "digraph G {\n");
- fprintf(proof,"node%d [shape=circle, label=\"BEGIN\", root];\n", uniqueid);
- }
- }
-
- if (statistics_on)
- reset_statistics();
-
- level = begin_level;
-}
-
-// For noting conflicts. Updates the proof graph and the statistics.
-void Logger::conflict(const confl_type type, uint goback, const uint group, const vec<Lit>& learnt_clause)
-{
- assert(!(proof == NULL && proof_graph_on));
- assert(goback < level);
-
- goback += begin_level;
- uniqueid++;
-
- if (proof_graph_on) {
- fprintf(proof,"node%d [shape=polygon,sides=5,label=\"",uniqueid);
- for (int i = 0; i < learnt_clause.size(); i++) {
- if (learnt_clause[i].sign()) fprintf(proof,"-");
- int myvar = learnt_clause[i].var();
- if (varnames.size() <= myvar || varnames[myvar].empty())
- fprintf(proof,"%d\\n",myvar+1);
- else fprintf(proof,"%s\\n",varnames[myvar].c_str());
- }
-
- fprintf(proof,"\"];\n");
-
- fprintf(proof,"node%d -> node%d [label=\"",history[level],uniqueid);
-
- if (type == gauss_confl_type) {
- fprintf(proof,"Gauss\",style=bold");
- } else if (group > max_group) fprintf(proof,"**%d\"",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\"", group);
- else fprintf(proof,"%s\"", groupnames[group].c_str());
- }
-
- fprintf(proof,"];\n");
- fprintf(proof,"node%d -> node%d [style=bold];\n",uniqueid,history[goback]);
- }
-
- if (statistics_on) {
- const uint depth = level - begin_level;
-
- if (group < max_group) { //TODO make work for learnt clauses
- times_group_caused_conflict[group]++;
- depths_of_conflicts_for_group[group].push_back(depth);
- }
- no_conflicts++;
- sum_conflict_depths += depth;
- sum_decisions_on_branches += decisions[depth];
- sum_propagations_on_branches += propagations[depth];
- branch_depth_distrib[depth]++;
- }
-
- level = goback;
-}
-
-// For the really strange event that the solver is given an empty clause
-void Logger::empty_clause(const uint group)
-{
- assert(!(proof == NULL && proof_graph_on));
-
- if (proof_graph_on) {
- fprintf(proof,"node%d -> node%d [label=\"emtpy clause:",history[level],uniqueid+1);
- if (group > max_group) fprintf(proof,"**%d\\n",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\\n", group);
- else fprintf(proof,"%s\\n", groupnames[group].c_str());
- }
-
- fprintf(proof,"\"];\n");
- }
-}
-
-// Propagating a literal. Type of literal and the (learned clause's)/(propagating clause's)/(etc) group must be given. Updates the proof graph and the statistics. note: the meaning of the variable 'group' depends on the type
-void Logger::propagation(const Lit lit, const prop_type type, const uint group)
-{
- assert(!(proof == NULL && proof_graph_on));
- uniqueid++;
-
- //graph
- if (proof_graph_on) {
- fprintf(proof,"node%d [shape=box, label=\"",uniqueid);;
- if (lit.sign()) fprintf(proof,"-");
- if (varnames.size() <= lit.var() || varnames[lit.var()].empty())
- fprintf(proof,"%d\"];\n",lit.var()+1);
- else fprintf(proof,"%s\"];\n",varnames[lit.var()].c_str());
-
- fprintf(proof,"node%d -> node%d [label=\"",history[level],uniqueid);
- switch (type) {
-
- case revert_guess_type:
- case simple_propagation_type:
- assert(group != UINT_MAX);
- if (group > max_group) fprintf(proof,"**%d\\n",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\\n", group);
- else fprintf(proof,"%s\\n", groupnames[group].c_str());
- }
-
- fprintf(proof,"\"];\n");
- break;
-
- case gauss_propagation_type:
- fprintf(proof,"Gauss\",style=bold];\n");
- break;
-
- case learnt_unit_clause_type:
- fprintf(proof,"learnt unit clause\",style=bold];\n");
- break;
-
- case assumption_type:
- fprintf(proof,"assumption\"];\n");
- break;
-
- case guess_type:
- fprintf(proof,"guess\",style=dotted];\n");
- break;
-
- case addclause_type:
- assert(group != UINT_MAX);
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"red. from %d\"];\n",group);
- else fprintf(proof,"red. from %s\"];\n",groupnames[group].c_str());
- break;
- }
- }
-
- if (statistics_on && proof_num > 0) switch (type) {
- case gauss_propagation_type:
- case simple_propagation_type:
- no_propagations++;
- times_var_propagated[lit.var()]++;
- if (group < max_group) { //TODO make work for learnt clauses
- depths_of_propagations_for_group[group].push_back(level - begin_level);
- times_group_caused_propagation[group]++;
- }
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- break;
-
- case learnt_unit_clause_type: //when learning unit clause
- case revert_guess_type: //when, after conflict, a guess gets reverted
- if (group < max_group) { //TODO make work for learnt clauses
- times_group_caused_propagation[group]++;
- depths_of_propagations_for_group[group].push_back(level - begin_level);
- }
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- case guess_type:
- times_var_guessed[lit.var()]++;
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- no_decisions++;
- break;
-
- case addclause_type:
- case assumption_type:
- assert(false);
- }
-
- level++;
-
- if (proof_num > 0) {
- decisions.growTo(level-begin_level+1);
- propagations.growTo(level-begin_level+1);
- if (level-begin_level == 1) {
- decisions[0] = 0;
- propagations[0] = 0;
- //note: we might reach this place TWICE in the same restart. This is because the first assignement might get reverted
- }
- if (type == simple_propagation_type) {
- decisions[level-begin_level] = decisions[level-begin_level-1];
- propagations[level-begin_level] = propagations[level-begin_level-1]+1;
- } else {
- decisions[level-begin_level] = decisions[level-begin_level-1]+1;
- propagations[level-begin_level] = propagations[level-begin_level-1];
- }
- }
-
- if (history.size() < level+1) history.growTo(level+10);
- history[level] = uniqueid;
-}
-
-// Ending of a restart iteration. Also called when ending S.simplify();
-void Logger::end(const finish_type finish)
-{
- assert(!(proof == NULL && proof_graph_on));
-
- switch (finish) {
- case model_found: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"MODEL\"];\n",uniqueid);
- break;
- }
- case unsat_model_found: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"UNSAT\"];\n",uniqueid);
- break;
- }
- case restarting: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"Re-starting\\nsearch\"];\n",uniqueid);
- break;
- }
- case done_adding_clauses: {
- begin_level = level;
- break;
- }
- }
-
- if (proof_graph_on) {
- if (proof_num > 0) {
- fprintf(proof,"node%d -> node%d;\n",history[level],uniqueid);
- fprintf(proof,"}\n");
- } else proof0_lastid = uniqueid;
-
- proof = (FILE*)fclose(proof);
- assert(proof == NULL);
-
- if (finish == model_found || finish == unsat_model_found) {
- proof = fopen(filename0,"a");
- fprintf(proof,"node%d [shape=doublecircle, label=\"Done adding\\nclauses\"];\n",proof0_lastid+1);
- fprintf(proof,"node%d -> node%d;\n",proof0_lastid,proof0_lastid+1);
- fprintf(proof,"}\n");
- proof = (FILE*)fclose(proof);
- assert(proof == NULL);
- }
- }
-
- if (statistics_on) printstats();
-
- proof_num++;
-}
-
-void Logger::print_footer() const
-{
- cout << "+" << std::setfill('-') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "-" << std::setfill(' ') << "+" << endl;
-}
-
-void Logger::print_assign_var_order() const
-{
- vector<pair<double, uint> > prop_ordered;
- for (uint i = 0; i < depths_of_assigns_for_var.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_assigns_for_var[i].begin(); it != depths_of_assigns_for_var[i].end(); it++)
- avg += *it;
- if (depths_of_assigns_for_var[i].size() > 0) {
- avg /= (double) depths_of_assigns_for_var[i].size();
- prop_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!prop_ordered.empty()) {
- print_footer();
- print_simple_line(" Variables are assigned in the following order");
- print_header("var", "var name", "avg order");
- std::sort(prop_ordered.begin(), prop_ordered.end());
- print_vars(prop_ordered);
- }
-}
-
-void Logger::print_prop_order() const
-{
- vector<pair<double, uint> > prop_ordered;
- for (uint i = 0; i < depths_of_propagations_for_group.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_propagations_for_group[i].begin(); it != depths_of_propagations_for_group[i].end(); it++)
- avg += *it;
- if (depths_of_propagations_for_group[i].size() > 0) {
- avg /= (double) depths_of_propagations_for_group[i].size();
- prop_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!prop_ordered.empty()) {
- print_footer();
- print_simple_line(" Propagation depth order of clause groups");
- print_header("group", "group name", "avg order");
- std::sort(prop_ordered.begin(), prop_ordered.end());
- print_groups(prop_ordered);
- }
-}
-
-void Logger::print_confl_order() const
-{
- vector<pair<double, uint> > confl_ordered;
- for (uint i = 0; i < depths_of_conflicts_for_group.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_conflicts_for_group[i].begin(); it != depths_of_conflicts_for_group[i].end(); it++)
- avg += *it;
- if (depths_of_conflicts_for_group[i].size() > 0) {
- avg /= (double) depths_of_conflicts_for_group[i].size();
- confl_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!confl_ordered.empty()) {
- print_footer();
- print_simple_line(" Avg. conflict depth order of clause groups");
- print_header("groupno", "group name", "avg. depth");
- std::sort(confl_ordered.begin(), confl_ordered.end());
- print_groups(confl_ordered);
- }
-}
-
-
-void Logger::print_times_var_guessed() const
-{
- vector<pair<uint, uint> > times_var_ordered;
- for (int i = 0; i < varnames.size(); i++) if (times_var_guessed[i] > 0)
- times_var_ordered.push_back(std::make_pair(times_var_guessed[i], i));
-
- if (!times_var_ordered.empty()) {
- print_footer();
- print_simple_line(" No. times variable branched on");
- print_header("var", "var name", "no. times");
- std::sort(times_var_ordered.rbegin(), times_var_ordered.rend());
- print_vars(times_var_ordered);
- }
-}
-
-void Logger::print_times_group_caused_propagation() const
-{
- vector<pair<uint, uint> > props_group_ordered;
- for (uint i = 0; i < times_group_caused_propagation.size(); i++)
- if (times_group_caused_propagation[i] > 0)
- props_group_ordered.push_back(std::make_pair(times_group_caused_propagation[i], i));
-
- if (!props_group_ordered.empty()) {
- print_footer();
- print_simple_line(" No. propagations made by clause groups");
- print_header("group", "group name", "no. props");
- std::sort(props_group_ordered.rbegin(),props_group_ordered.rend());
- print_groups(props_group_ordered);
- }
-}
-
-void Logger::print_times_group_caused_conflict() const
-{
- vector<pair<uint, uint> > confls_group_ordered;
- for (uint i = 0; i < times_group_caused_conflict.size(); i++)
- if (times_group_caused_conflict[i] > 0)
- confls_group_ordered.push_back(std::make_pair(times_group_caused_conflict[i], i));
-
- if (!confls_group_ordered.empty()) {
- print_footer();
- print_simple_line(" No. conflicts made by clause groups");
- print_header("group", "group name", "no. confl");
- std::sort(confls_group_ordered.rbegin(), confls_group_ordered.rend());
- print_groups(confls_group_ordered);
- }
-}
-
-template<class T>
-inline void Logger::print_line(const uint& number, const string& name, const T& value) const
-{
- cout << "|" << std::setw(FST_WIDTH) << number << " " << std::setw(SND_WIDTH) << name << " " << std::setw(TRD_WIDTH) << value << "|" << endl;
-}
-
-void Logger::print_header(const string& first, const string& second, const string& third) const
-{
- cout << "|" << std::setw(FST_WIDTH) << first << " " << std::setw(SND_WIDTH) << second << " " << std::setw(TRD_WIDTH) << third << "|" << endl;
- print_footer();
-}
-
-void Logger::print_groups(const vector<pair<double, uint> >& to_print) const
-{
- uint i = 0;
- typedef vector<pair<double, uint> >::const_iterator myiterator;
- for (myiterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- string name;
-
- if (it->second > max_group)
- name = "learnt clause";
- else
- name = groupnames[it->second];
-
- print_line(it->second+1, name, it->first);
- }
- print_footer();
-}
-
-void Logger::print_groups(const vector<pair<uint, uint> >& to_print) const
-{
- uint i = 0;
- typedef vector<pair<uint, uint> >::const_iterator myiterator;
- for (myiterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- string name;
-
- if (it->second > max_group)
- name = "learnt clause";
- else
- name = groupnames[it->second];
-
- print_line(it->second+1, name, it->first);
- }
- print_footer();
-}
-
-void Logger::print_vars(const vector<pair<double, uint> >& to_print) const
-{
- uint i = 0;
- for (vector<pair<double, uint> >::const_iterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++)
- print_line(it->second+1, varnames[it->second], it->first);
-
- print_footer();
-}
-
-void Logger::print_vars(const vector<pair<uint, uint> >& to_print) const
-{
- uint i = 0;
- for (vector<pair<uint, uint> >::const_iterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- print_line(it->second+1, varnames[it->second], it->first);
- }
-
- print_footer();
-}
-
-template<class T>
-void Logger::print_line(const string& str, const T& num) const
-{
- cout << "|" << std::setw(FST_WIDTH+SND_WIDTH+4) << str << std::setw(TRD_WIDTH) << num << "|" << endl;
-}
-
-void Logger::print_simple_line(const string& str) const
-{
- cout << "|" << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << str << "|" << endl;
-}
-
-void Logger::print_branch_depth_distrib() const
-{
- //cout << "--- Branch depth stats ---" << endl;
-
- const uint range = 20;
- map<uint, uint> range_stat;
-
- for (map<uint, uint>::const_iterator it = branch_depth_distrib.begin(); it != branch_depth_distrib.end(); it++) {
- //cout << it->first << " : " << it->second << endl;
- range_stat[it->first/range] += it->second;
- }
- //cout << endl;
-
- print_footer();
- print_simple_line(" No. search branches with branch depth between");
- print_line("Branch depth between", "no. br.-s");
- print_footer();
-
- std::stringstream ss;
- ss << "branch_depths/branch_depth_file" << runid << "-" << proof_num << ".txt";
- ofstream branch_depth_file;
- branch_depth_file.open(ss.str().c_str());
- uint i = 0;
-
- for (map<uint, uint>::iterator it = range_stat.begin(); it != range_stat.end(); it++) {
- std::stringstream ss2;
- ss2 << it->first*range << " - " << it->first*range + range-1;
- print_line(ss2.str(), it->second);
-
- if (branch_depth_file.is_open()) {
- branch_depth_file << i << "\t" << it->second << "\t";
- if (i % 5 == 0)
- branch_depth_file << "\"" << it->first*range << "\"";
- else
- branch_depth_file << "\"\"";
- branch_depth_file << endl;
- }
- i++;
- }
- if (branch_depth_file.is_open())
- branch_depth_file.close();
- print_footer();
-
-}
-
-void Logger::print_general_stats(uint restarts, uint64_t conflicts, int vars, int noClauses, uint64_t clauses_Literals, int noLearnts, double litsPerLearntCl, double progressEstimate) const
-{
- print_footer();
- print_simple_line(" Standard MiniSat restart statistics");
- print_footer();
- print_line("Restart number", restarts);
- print_line("Number of conflicts", conflicts);
- print_line("Number of variables", vars);
- print_line("Number of clauses", noClauses);
- print_line("Number of literals in clauses",clauses_Literals);
- print_line("Avg. literals per learnt clause",litsPerLearntCl);
- print_line("Progress estimate (%):", progressEstimate);
- print_footer();
-}
-
-
-// Prints statistics on the console
-void Logger::printstats() const
-{
- assert(statistics_on);
- assert(varnames.size() == times_var_guessed.size());
- assert(varnames.size() == times_var_propagated.size());
-
- printf("\n");
- cout << "+" << std::setfill('=') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "=" << "+" << endl;
- cout << "||" << std::setfill('*') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+2) << "********* STATS FOR THIS RESTART BEGIN " << "||" << endl;
- cout << "+" << std::setfill('=') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "=" << std::setfill(' ') << "+" << endl;
- cout.setf(std::ios_base::left);
- cout.precision(4);
- print_times_var_guessed();
- print_times_group_caused_propagation();
- print_times_group_caused_conflict();
- print_prop_order();
- print_confl_order();
- print_assign_var_order();
- print_branch_depth_distrib();
-
- print_footer();
- print_simple_line(" Advanced statistics");
- print_footer();
- print_line("No. branches visited", no_conflicts);
- print_line("Avg. branch depth", (double)sum_conflict_depths/(double)no_conflicts);
- print_line("No. decisions", no_decisions);
- print_line("No. propagations",no_propagations);
-
- //printf("no progatations/no decisions (i.e. one decision gives how many propagations on average *for the whole search graph*): %f\n", (double)no_propagations/(double)no_decisions);
- //printf("no propagations/sum decisions on branches (if you look at one specific branch, what is the average number of propagations you will find?): %f\n", (double)no_propagations/(double)sum_decisions_on_branches);
-
- print_simple_line("sum decisions on branches/no. branches");
- print_simple_line(" (in a given branch, what is the avg.");
- print_line(" no. of decisions?)",(double)sum_decisions_on_branches/(double)no_conflicts);
-
- print_simple_line("sum propagations on branches/no. branches");
- print_simple_line(" (in a given branch, what is the");
- print_line(" avg. no. of propagations?)",(double)sum_propagations_on_branches/(double)no_conflicts);
- print_footer();
-
- print_footer();
- print_simple_line("Statistics note: If you used CryptoMiniSat as");
- print_simple_line("a library then vars are all shifted by 1 here");
- print_simple_line("and in every printed output of the solver.");
- print_simple_line("This does not apply when you use CryptoMiniSat");
- print_simple_line("as a stand-alone program.");
- print_footer();
-}
-
-// resets all stored statistics. Might be useful, to generate statistics for each restart and not for the whole search in general
-void Logger::reset_statistics()
-{
- assert(times_var_guessed.size() == times_var_propagated.size());
- assert(times_group_caused_conflict.size() == times_group_caused_propagation.size());
-
- typedef vector<uint>::iterator vecit;
- for (vecit it = times_var_guessed.begin(); it != times_var_guessed.end(); it++)
- *it = 0;
-
- for (vecit it = times_var_propagated.begin(); it != times_var_propagated.end(); it++)
- *it = 0;
-
- for (vecit it = times_group_caused_conflict.begin(); it != times_group_caused_conflict.end(); it++)
- *it = 0;
-
- for (vecit it = times_group_caused_propagation.begin(); it != times_group_caused_propagation.end(); it++)
- *it = 0;
-
- for (vecit it = confls_by_group.begin(); it != confls_by_group.end(); it++)
- *it = 0;
-
- for (vecit it = props_by_group.begin(); it != props_by_group.end(); it++)
- *it = 0;
-
- typedef vector<vector<uint> >::iterator vecvecit;
-
- for (vecvecit it = depths_of_propagations_for_group.begin(); it != depths_of_propagations_for_group.end(); it++)
- it->clear();
-
- for (vecvecit it = depths_of_conflicts_for_group.begin(); it != depths_of_conflicts_for_group.end(); it++)
- it->clear();
-
- for (vecvecit it = depths_of_assigns_for_var.begin(); it != depths_of_assigns_for_var.end(); it++)
- it->clear();
-
- sum_conflict_depths = 0;
- no_conflicts = 0;
- no_decisions = 0;
- no_propagations = 0;
- decisions.clear();
- propagations.clear();
- sum_decisions_on_branches = 0;
- sum_propagations_on_branches = 0;
- branch_depth_distrib.clear();
-}
-};
+++ /dev/null
-/***********************************************************************************
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef __LOGGER_H__
-#define __LOGGER_H__
-
-#include <stdio.h>
-#include <set>
-//#include <Vec.h>
-#include <vector>
-
-#include "mtl/Vec.h"
-#include "mtl/Heap.h"
-#include "mtl/Alg.h"
-#include "Logger.h"
-#include "SolverTypes.h"
-#include <string>
-#include <map>
-#include "stdint.h"
-#include "limits.h"
-
-using std::vector;
-using std::pair;
-using std::string;
-using std::map;
-
-
-namespace MINISAT
-{
-#ifndef uint
-#define uint unsigned int
-#endif
-
-class Logger
-{
-public:
- Logger(int& vebosity);
-
- //types of props, confl, and finish
- enum prop_type { revert_guess_type, learnt_unit_clause_type, assumption_type, guess_type, addclause_type, simple_propagation_type, gauss_propagation_type };
- enum confl_type { simple_confl_type, gauss_confl_type };
- enum finish_type { model_found, unsat_model_found, restarting, done_adding_clauses };
-
- //Conflict and propagation(guess is also a proapgation...)
- void conflict(const confl_type type, uint goback, const uint group, const vec<Lit>& learnt_clause);
- void propagation(const Lit lit, const prop_type type, const uint group = UINT_MAX);
- void empty_clause(const uint group);
-
- //functions to add/name variables
- void new_var(const Var var);
- void set_variable_name(const uint var, const char* name);
-
- //functions to add/name clause groups
- void new_group(const uint group);
- void set_group_name(const uint group, const char* name);
-
- void begin();
- void end(const finish_type finish);
- void print_general_stats(uint restarts, uint64_t conflicts, int vars, int noClauses, uint64_t clauses_Literals, int noLearnts, double litsPerLearntCl, double progressEstimate) const;
-
- void newclause(const vec<Lit>& ps, const bool xor_clause, const uint group);
-
- bool proof_graph_on;
- bool statistics_on;
-private:
- void print_groups(const vector<pair<uint, uint> >& to_print) const;
- void print_groups(const vector<pair<double, uint> >& to_print) const;
- void print_vars(const vector<pair<uint, uint> >& to_print) const;
- void print_vars(const vector<pair<double, uint> >& to_print) const;
- void print_times_var_guessed() const;
- void print_times_group_caused_propagation() const;
- void print_times_group_caused_conflict() const;
- void print_branch_depth_distrib() const;
-
- uint max_print_lines;
- template<class T>
- void print_line(const uint& number, const string& name, const T& value) const;
- void print_header(const string& first, const string& second, const string& third) const;
- void print_footer() const;
- template<class T>
- void print_line(const string& str, const T& num) const;
- void print_simple_line(const string& str) const;
- void print_confl_order() const;
- void print_prop_order() const;
- void print_assign_var_order() const;
- void printstats() const;
- void reset_statistics();
-
- //internal data structures
- uint uniqueid; //used to store the last unique ID given to a node
- vec<uint> history; //stores the node uniqueIDs
- uint level; //used to know the current level
- uint begin_level;
- uint max_group;
-
- //graph drawing
- FILE* proof; //The file to store the proof
- uint proof_num;
- char filename0[80];
- uint runid;
- uint proof0_lastid;
-
- //---------------------
- //statistics collection
- //---------------------
-
- //group and var names
- vector<string> groupnames;
- vector<string> varnames;
-
- //confls and props grouped by clause groups
- vector<uint> confls_by_group;
- vector<uint> props_by_group;
-
- //props and guesses grouped by vars
- vector<uint> times_var_guessed;
- vector<uint> times_var_propagated;
-
- vector<uint> times_group_caused_conflict;
- vector<uint> times_group_caused_propagation;
-
- vector<vector<uint> > depths_of_propagations_for_group;
- vector<vector<uint> > depths_of_conflicts_for_group;
- vector<vector<uint> > depths_of_assigns_for_var;
-
- //the distribution of branch depths. first = depth, second = number of occurances
- map<uint, uint> branch_depth_distrib;
-
- uint sum_conflict_depths;
- uint no_conflicts;
- uint no_decisions;
- uint no_propagations;
- vec<uint> decisions;
- vec<uint> propagations;
- uint sum_decisions_on_branches;
- uint sum_propagations_on_branches;
-
- //message display properties
- const int& verbosity;
-};
-
-};
-#endif //__LOGGER_H__
+++ /dev/null
-// MersenneTwister.h
-// Mersenne Twister random number generator -- a C++ class MTRand
-// Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
-// Richard J. Wagner v1.0 15 May 2003 rjwagner@writeme.com
-
-// The Mersenne Twister is an algorithm for generating random numbers. It
-// was designed with consideration of the flaws in various other generators.
-// The period, 2^19937-1, and the order of equidistribution, 623 dimensions,
-// are far greater. The generator is also fast; it avoids multiplication and
-// division, and it benefits from caches and pipelines. For more information
-// see the inventors' web page at http://www.math.keio.ac.jp/~matumoto/emt.html
-
-// Reference
-// M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-Dimensionally
-// Equidistributed Uniform Pseudo-Random Number Generator", ACM Transactions on
-// Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
-
-// Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
-// Copyright (C) 2000 - 2003, Richard J. Wagner
-// All rights reserved.
-//
-// Redistribution and use in source and binary forms, with or without
-// modification, are permitted provided that the following conditions
-// are met:
-//
-// 1. Redistributions of source code must retain the above copyright
-// notice, this list of conditions and the following disclaimer.
-//
-// 2. Redistributions in binary form must reproduce the above copyright
-// notice, this list of conditions and the following disclaimer in the
-// documentation and/or other materials provided with the distribution.
-//
-// 3. The names of its contributors may not be used to endorse or promote
-// products derived from this software without specific prior written
-// permission.
-//
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
-// CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
-// EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
-// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
-// PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
-// LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
-// NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
-// SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-// The original code included the following notice:
-//
-// When you use this, send an email to: matumoto@math.keio.ac.jp
-// with an appropriate reference to your work.
-//
-// It would be nice to CC: rjwagner@writeme.com and Cokus@math.washington.edu
-// when you write.
-
-#ifndef MERSENNETWISTER_H
-#define MERSENNETWISTER_H
-
-#include <iostream>
-#include <limits.h>
-#include <stdio.h>
-#include <time.h>
-#include <math.h>
-
-namespace MINISAT
-{
-
-// Not thread safe (unless auto-initialization is avoided and each thread has
-// its own MTRand object)
-
-class MTRand {
-// Data
-public:
- typedef unsigned long uint32; // unsigned integer type, at least 32 bits
-
- enum { N = 624 }; // length of state vector
- enum { SAVE = N + 1 }; // length of array for save()
-
-protected:
- enum { M = 397 }; // period parameter
-
- uint32 state[N]; // internal state
- uint32 *pNext; // next value to get from state
- int left; // number of values left before reload needed
-
-
-//Methods
-public:
- MTRand( const uint32& oneSeed ); // initialize with a simple uint32
- MTRand( uint32 *const bigSeed, uint32 const seedLength = N ); // or an array
- MTRand(); // auto-initialize with /dev/urandom or time() and clock()
-
- // Do NOT use for CRYPTOGRAPHY without securely hashing several returned
- // values together, otherwise the generator state can be learned after
- // reading 624 consecutive values.
-
- // Access to 32-bit random numbers
- double rand(); // real number in [0,1]
- double rand( const double& n ); // real number in [0,n]
- double randExc(); // real number in [0,1)
- double randExc( const double& n ); // real number in [0,n)
- double randDblExc(); // real number in (0,1)
- double randDblExc( const double& n ); // real number in (0,n)
- uint32 randInt(); // integer in [0,2^32-1]
- uint32 randInt( const uint32& n ); // integer in [0,n] for n < 2^32
- double operator()() { return rand(); } // same as rand()
-
- // Access to 53-bit random numbers (capacity of IEEE double precision)
- double rand53(); // real number in [0,1)
-
- // Access to nonuniform random number distributions
- double randNorm( const double& mean = 0.0, const double& variance = 0.0 );
-
- // Re-seeding functions with same behavior as initializers
- void seed( const uint32 oneSeed );
- void seed( uint32 *const bigSeed, const uint32 seedLength = N );
- void seed();
-
- // Saving and loading generator state
- void save( uint32* saveArray ) const; // to array of size SAVE
- void load( uint32 *const loadArray ); // from such array
- friend std::ostream& operator<<( std::ostream& os, const MTRand& mtrand );
- friend std::istream& operator>>( std::istream& is, MTRand& mtrand );
-
-protected:
- void initialize( const uint32 oneSeed );
- void reload();
- uint32 hiBit( const uint32& u ) const { return u & 0x80000000UL; }
- uint32 loBit( const uint32& u ) const { return u & 0x00000001UL; }
- uint32 loBits( const uint32& u ) const { return u & 0x7fffffffUL; }
- uint32 mixBits( const uint32& u, const uint32& v ) const
- { return hiBit(u) | loBits(v); }
- uint32 twist( const uint32& m, const uint32& s0, const uint32& s1 ) const
- { return m ^ (mixBits(s0,s1)>>1) ^ (-loBit(s1) & 0x9908b0dfUL); }
- static uint32 hash( time_t t, clock_t c );
-};
-
-
-inline MTRand::MTRand( const uint32& oneSeed )
- { seed(oneSeed); }
-
-inline MTRand::MTRand( uint32 *const bigSeed, const uint32 seedLength )
- { seed(bigSeed,seedLength); }
-
-inline MTRand::MTRand()
- { seed(); }
-
-inline double MTRand::rand()
- { return double(randInt()) * (1.0/4294967295.0); }
-
-inline double MTRand::rand( const double& n )
- { return rand() * n; }
-
-inline double MTRand::randExc()
- { return double(randInt()) * (1.0/4294967296.0); }
-
-inline double MTRand::randExc( const double& n )
- { return randExc() * n; }
-
-inline double MTRand::randDblExc()
- { return ( double(randInt()) + 0.5 ) * (1.0/4294967296.0); }
-
-inline double MTRand::randDblExc( const double& n )
- { return randDblExc() * n; }
-
-inline double MTRand::rand53()
-{
- uint32 a = randInt() >> 5, b = randInt() >> 6;
- return ( a * 67108864.0 + b ) * (1.0/9007199254740992.0); // by Isaku Wada
-}
-
-inline double MTRand::randNorm( const double& mean, const double& variance )
-{
- // Return a real number from a normal (Gaussian) distribution with given
- // mean and variance by Box-Muller method
- double r = sqrt( -2.0 * log( 1.0-randDblExc()) ) * variance;
- double phi = 2.0 * 3.14159265358979323846264338328 * randExc();
- return mean + r * cos(phi);
-}
-
-inline MTRand::uint32 MTRand::randInt()
-{
- // Pull a 32-bit integer from the generator state
- // Every other access function simply transforms the numbers extracted here
-
- if( left == 0 ) reload();
- --left;
-
- register uint32 s1;
- s1 = *pNext++;
- s1 ^= (s1 >> 11);
- s1 ^= (s1 << 7) & 0x9d2c5680UL;
- s1 ^= (s1 << 15) & 0xefc60000UL;
- return ( s1 ^ (s1 >> 18) );
-}
-
-inline MTRand::uint32 MTRand::randInt( const uint32& n )
-{
- // Find which bits are used in n
- // Optimized by Magnus Jonsson (magnus@smartelectronix.com)
- uint32 used = n;
- used |= used >> 1;
- used |= used >> 2;
- used |= used >> 4;
- used |= used >> 8;
- used |= used >> 16;
-
- // Draw numbers until one is found in [0,n]
- uint32 i;
- do
- i = randInt() & used; // toss unused bits to shorten search
- while( i > n );
- return i;
-}
-
-
-inline void MTRand::seed( const uint32 oneSeed )
-{
- // Seed the generator with a simple uint32
- initialize(oneSeed);
- reload();
-}
-
-
-inline void MTRand::seed( uint32 *const bigSeed, const uint32 seedLength )
-{
- // Seed the generator with an array of uint32's
- // There are 2^19937-1 possible initial states. This function allows
- // all of those to be accessed by providing at least 19937 bits (with a
- // default seed length of N = 624 uint32's). Any bits above the lower 32
- // in each element are discarded.
- // Just call seed() if you want to get array from /dev/urandom
- initialize(19650218UL);
- register int i = 1;
- register uint32 j = 0;
- register int k = ( N > seedLength ? N : seedLength );
- for( ; k; --k )
- {
- state[i] =
- state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1664525UL );
- state[i] += ( bigSeed[j] & 0xffffffffUL ) + j;
- state[i] &= 0xffffffffUL;
- ++i; ++j;
- if( i >= N ) { state[0] = state[N-1]; i = 1; }
- if( j >= seedLength ) j = 0;
- }
- for( k = N - 1; k; --k )
- {
- state[i] =
- state[i] ^ ( (state[i-1] ^ (state[i-1] >> 30)) * 1566083941UL );
- state[i] -= i;
- state[i] &= 0xffffffffUL;
- ++i;
- if( i >= N ) { state[0] = state[N-1]; i = 1; }
- }
- state[0] = 0x80000000UL; // MSB is 1, assuring non-zero initial array
- reload();
-}
-
-
-inline void MTRand::seed()
-{
- // Seed the generator with an array from /dev/urandom if available
- // Otherwise use a hash of time() and clock() values
-
- // First try getting an array from /dev/urandom
- FILE* urandom = fopen( "/dev/urandom", "rb" );
- if( urandom )
- {
- uint32 bigSeed[N];
- register uint32 *s = bigSeed;
- register int i = N;
- register bool success = true;
- while( success && i-- )
- success = fread( s++, sizeof(uint32), 1, urandom );
- fclose(urandom);
- if( success ) { seed( bigSeed, N ); return; }
- }
-
- // Was not successful, so use time() and clock() instead
- seed( hash( time(NULL), clock() ) );
-}
-
-
-inline void MTRand::initialize( const uint32 seed )
-{
- // Initialize generator state with seed
- // See Knuth TAOCP Vol 2, 3rd Ed, p.106 for multiplier.
- // In previous versions, most significant bits (MSBs) of the seed affect
- // only MSBs of the state array. Modified 9 Jan 2002 by Makoto Matsumoto.
- register uint32 *s = state;
- register uint32 *r = state;
- register int i = 1;
- *s++ = seed & 0xffffffffUL;
- for( ; i < N; ++i )
- {
- *s++ = ( 1812433253UL * ( *r ^ (*r >> 30) ) + i ) & 0xffffffffUL;
- r++;
- }
-}
-
-
-inline void MTRand::reload()
-{
- // Generate N new values in state
- // Made clearer and faster by Matthew Bellew (matthew.bellew@home.com)
- register uint32 *p = state;
- register int i;
- for( i = N - M; i--; ++p )
- *p = twist( p[M], p[0], p[1] );
- for( i = M; --i; ++p )
- *p = twist( p[M-N], p[0], p[1] );
- *p = twist( p[M-N], p[0], state[0] );
-
- left = N, pNext = state;
-}
-
-
-inline MTRand::uint32 MTRand::hash( time_t t, clock_t c )
-{
- // Get a uint32 from t and c
- // Better than uint32(x) in case x is floating point in [0,1]
- // Based on code by Lawrence Kirby (fred@genesis.demon.co.uk)
-
- static uint32 differ = 0; // guarantee time-based seeds will change
-
- uint32 h1 = 0;
- unsigned char *p = (unsigned char *) &t;
- for( size_t i = 0; i < sizeof(t); ++i )
- {
- h1 *= UCHAR_MAX + 2U;
- h1 += p[i];
- }
- uint32 h2 = 0;
- p = (unsigned char *) &c;
- for( size_t j = 0; j < sizeof(c); ++j )
- {
- h2 *= UCHAR_MAX + 2U;
- h2 += p[j];
- }
- return ( h1 + differ++ ) ^ h2;
-}
-
-
-inline void MTRand::save( uint32* saveArray ) const
-{
- register uint32 *sa = saveArray;
- register const uint32 *s = state;
- register int i = N;
- for( ; i--; *sa++ = *s++ ) {}
- *sa = left;
-}
-
-
-inline void MTRand::load( uint32 *const loadArray )
-{
- register uint32 *s = state;
- register uint32 *la = loadArray;
- register int i = N;
- for( ; i--; *s++ = *la++ ) {}
- left = *la;
- pNext = &state[N-left];
-}
-
-
-inline std::ostream& operator<<( std::ostream& os, const MTRand& mtrand )
-{
- register const MTRand::uint32 *s = mtrand.state;
- register int i = mtrand.N;
- for( ; i--; os << *s++ << "\t" ) {}
- return os << mtrand.left;
-}
-
-
-inline std::istream& operator>>( std::istream& is, MTRand& mtrand )
-{
- register MTRand::uint32 *s = mtrand.state;
- register int i = mtrand.N;
- for( ; i--; is >> *s++ ) {}
- is >> mtrand.left;
- mtrand.pNext = &mtrand.state[mtrand.N-mtrand.left];
- return is;
-}
-};
-
-#endif // MERSENNETWISTER_H
-
-// Change log:
-//
-// v0.1 - First release on 15 May 2000
-// - Based on code by Makoto Matsumoto, Takuji Nishimura, and Shawn Cokus
-// - Translated from C to C++
-// - Made completely ANSI compliant
-// - Designed convenient interface for initialization, seeding, and
-// obtaining numbers in default or user-defined ranges
-// - Added automatic seeding from /dev/urandom or time() and clock()
-// - Provided functions for saving and loading generator state
-//
-// v0.2 - Fixed bug which reloaded generator one step too late
-//
-// v0.3 - Switched to clearer, faster reload() code from Matthew Bellew
-//
-// v0.4 - Removed trailing newline in saved generator format to be consistent
-// with output format of built-in types
-//
-// v0.5 - Improved portability by replacing static const int's with enum's and
-// clarifying return values in seed(); suggested by Eric Heimburg
-// - Removed MAXINT constant; use 0xffffffffUL instead
-//
-// v0.6 - Eliminated seed overflow when uint32 is larger than 32 bits
-// - Changed integer [0,n] generator to give better uniformity
-//
-// v0.7 - Fixed operator precedence ambiguity in reload()
-// - Added access for real numbers in (0,1) and (0,n)
-//
-// v0.8 - Included time.h header to properly support time_t and clock_t
-//
-// v1.0 - Revised seeding to match 26 Jan 2002 update of Nishimura and Matsumoto
-// - Allowed for seeding with arrays of any length
-// - Added access for real numbers in [0,1) with 53-bit resolution
-// - Added access for real numbers from normal (Gaussian) distributions
-// - Increased overall speed by optimizing twist()
-// - Doubled speed of integer [0,n] generation
-// - Fixed out-of-range number generation on 64-bit machines
-// - Improved portability by substituting literal constants for long enum's
-// - Changed license from GNU LGPL to BSD
+++ /dev/null
-TOP = ../../..
-include $(TOP)/scripts/Makefile.common
-
-MTL = mtl
-MTRAND = MTRand
-SOURCES = Solver.cpp clause.cpp fcopy.cpp Logger.cpp
-OBJECTS = $(SOURCES:.cpp=.o)
-LIB = libminisat.a
-CFLAGS += -I$(MTL) -I$(MTRAND) -DEXT_HASH_MAP -ffloat-store $(CFLAGS_M32) -c
-EXEC = minisat
-LFLAGS = -lz
-
-all: $(LIB) #$(EXEC)
-lib: $(LIB)
-
-$(LIB): $(OBJECTS)
- rm -f $@
- ar cq $@ $(OBJECTS)
- ranlib $@
- cp $(LIB) ../
- cp $(OBJECTS) ../
-
-clean:
- rm -f $(OBJECTS) $(LIB)
-
-.cpp.o:
- $(CC) $(CFLAGS) $< -o $@
+++ /dev/null
-/****************************************************************************************[Solver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "Solver.h"
-#include "Sort.h"
-#include <cmath>
-#include <string.h>
-#include <algorithm>
-#include <limits.h>
-#include <vector>
-#include "clause.h"
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// Constructor/Destructor:
-
-
-Solver::Solver() :
- // Parameters: (formerly in 'SearchParams')
- var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
- , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
-
- // More parameters:
- //
- , expensive_ccmin (true)
- , polarity_mode (polarity_user)
- , verbosity (0)
- , restrictedPickBranch(0)
- , useRealUnknowns(false)
-
- // Statistics: (formerly in 'SolverStats')
- //
- , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
- , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
-
- , ok (true)
- , cla_inc (1)
- , var_inc (1)
- , qhead (0)
- , simpDB_assigns (-1)
- , simpDB_props (0)
- , order_heap (VarOrderLt(activity))
- , progress_estimate(0)
- , remove_satisfied (true)
- , mtrand((unsigned long int)0)
- , logger(verbosity)
- , dynamic_behaviour_analysis(false) //do not document the proof as default
- , maxRestarts(UINT_MAX)
- , learnt_clause_group(0)
-{
-}
-
-
-Solver::~Solver()
-{
- for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
- for (int i = 0; i < unitary_learnts.size(); i++) free(unitary_learnts[i]);
- for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
- for (int i = 0; i < xorclauses.size(); i++) free(xorclauses[i]);
-}
-
-//=================================================================================================
-// Minor methods:
-
-
-// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
-// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
-Var Solver::newVar(bool sign, bool dvar)
-{
- int v = nVars();
- watches .push(); // (list for positive literal)
- watches .push(); // (list for negative literal)
- xorwatches.push(); // (list for variables in xors)
- reason .push(NULL);
- assigns .push(l_Undef);
- level .push(-1);
- activity .push(0);
- seen .push(0);
- polarity .push((char)sign);
-
- polarity .push((char)sign);
- decision_var.push((char)dvar);
-
- insertVarOrder(v);
- logger.new_var(v);
-
- return v;
-}
-
-bool Solver::addXorClause(vec<Lit>& ps, bool xor_clause_inverted, const uint group, const char* group_name)
-{
- assert(decisionLevel() == 0);
-
- if (dynamic_behaviour_analysis) logger.set_group_name(group, group_name);
-
- if (!ok)
- return false;
-
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p;
- int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
- while (ps[i].var() >= nVars()) newVar();
- xor_clause_inverted ^= ps[i].sign();
- ps[i] ^= ps[i].sign();
-
- if (ps[i] == p) {
- //added, but easily removed
- j--;
- p = lit_Undef;
- if (!assigns[ps[i].var()].isUndef())
- xor_clause_inverted ^= assigns[ps[i].var()].getBool();
- } else if (value(ps[i]) == l_Undef) //just add
- ps[j++] = p = ps[i];
- else xor_clause_inverted ^= (value(ps[i]) == l_True); //modify xor_clause_inverted instead of adding
- }
- ps.shrink(i - j);
-
- if (ps.size() == 0) {
- if (xor_clause_inverted)
- return true;
-
- if (dynamic_behaviour_analysis) logger.empty_clause(group);
- return ok = false;
- } else if (ps.size() == 1) {
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue( (xor_clause_inverted) ? ~ps[0] : ps[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation((xor_clause_inverted) ? ~ps[0] : ps[0], Logger::addclause_type, group);
- return ok = (propagate() == NULL);
- } else {
- learnt_clause_group = std::max(group+1, learnt_clause_group);
-
- XorClause* c = XorClause_new(ps, xor_clause_inverted, group);
-
- xorclauses.push(c);
- attachClause(*c);
- }
-
- return true;
-}
-
-bool Solver::addClause(vec<Lit>& ps, const uint group, const char* group_name)
-{
- assert(decisionLevel() == 0);
-
- if (dynamic_behaviour_analysis)
- logger.set_group_name(group, group_name);
-
- if (!ok)
- return false;
-
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p;
- int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
- while (ps[i].var() >= nVars()) newVar();
-
- if (value(ps[i]) == l_True || ps[i] == ~p)
- return true;
- else if (value(ps[i]) != l_False && ps[i] != p)
- ps[j++] = p = ps[i];
- }
- ps.shrink(i - j);
-
- if (ps.size() == 0) {
- if (dynamic_behaviour_analysis) logger.empty_clause(group);
- return ok = false;
- } else if (ps.size() == 1) {
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue(ps[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation(ps[0], Logger::addclause_type, group);
- return ok = (propagate() == NULL);
- } else {
- learnt_clause_group = std::max(group+1, learnt_clause_group);
-
- Clause* c = Clause_new(ps, group);
-
- clauses.push(c);
- attachClause(*c);
- }
-
- return true;
-}
-
-void Solver::attachClause(XorClause& c)
-{
- assert(c.size() > 1);
-
- xorwatches[c[0].var()].push(&c);
- xorwatches[c[1].var()].push(&c);
-
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size();
-}
-
-void Solver::attachClause(Clause& c)
-{
- assert(c.size() > 1);
-
- watches[(~c[0]).toInt()].push(&c);
- watches[(~c[1]).toInt()].push(&c);
-
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size();
-}
-
-
-void Solver::detachClause(const XorClause& c)
-{
- assert(c.size() > 1);
- assert(find(xorwatches[c[0].var()], &c));
- assert(find(xorwatches[c[1].var()], &c));
- remove(xorwatches[c[0].var()], &c);
- remove(xorwatches[c[1].var()], &c);
-
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size();
-}
-
-void Solver::detachClause(const Clause& c)
-{
- assert(c.size() > 1);
- assert(find(watches[(~c[0]).toInt()], &c));
- assert(find(watches[(~c[1]).toInt()], &c));
- remove(watches[(~c[0]).toInt()], &c);
- remove(watches[(~c[1]).toInt()], &c);
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size();
-}
-
-template<class T>
-void Solver::removeClause(T& c)
-{
- detachClause(c);
- free(&c);
-}
-
-
-bool Solver::satisfied(const Clause& c) const
-{
- for (uint i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True)
- return true;
- return false;
-}
-
-bool Solver::satisfied(const XorClause& c) const
-{
- bool final = c.xor_clause_inverted();
- for (uint k = 0; k < c.size(); k++ ) {
- const lbool& val = assigns[c[k].var()];
- if (val.isUndef()) return false;
- final ^= val.getBool();
- }
- return final;
-}
-
-
-// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
-//
-void Solver::cancelUntil(int level)
-{
- #ifdef VERBOSE_DEBUG
- cout << "Canceling until level " << level;
- if (level > 0) cout << " sublevel: " << trail_lim[level];
- cout << endl;
- #endif
-
- if (decisionLevel() > level) {
- for (int c = trail.size()-1; c >= trail_lim[level]; c--) {
- Var x = trail[c].var();
- #ifdef VERBOSE_DEBUG
- cout << "Canceling var " << x+1 << " sublevel:" << c << endl;
- #endif
- assigns[x] = l_Undef;
- insertVarOrder(x);
- }
- qhead = trail_lim[level];
- trail.shrink(trail.size() - trail_lim[level]);
- trail_lim.shrink(trail_lim.size() - level);
- }
-
- #ifdef VERBOSE_DEBUG
- cout << "Canceling finished. (now at level: " << decisionLevel() << " sublevel:" << trail.size()-1 << ")" << endl;
- #endif
-}
-
-//Permutates the clauses in the solver. Very useful to calcuate the average time it takes the solver to solve the prolbem
-void Solver::permutateClauses()
-{
- for (int i = 0; i < clauses.size(); i++) {
- int j = mtrand.randInt(i);
- Clause* tmp = clauses[i];
- clauses[i] = clauses[j];
- clauses[j] = tmp;
- }
-
- for (int i = 0; i < xorclauses.size(); i++) {
- int j = mtrand.randInt(i);
- XorClause* tmp = xorclauses[i];
- xorclauses[i] = xorclauses[j];
- xorclauses[j] = tmp;
- }
-}
-
-void Solver::setRealUnknown(const uint var)
-{
- if (realUnknowns.size() < var+1)
- realUnknowns.resize(var+1, false);
- realUnknowns[var] = true;
-}
-
-void Solver::printLit(const Lit l) const
-{
- printf("%s%d:%c", l.sign() ? "-" : "", l.var()+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
-}
-
-
-void Solver::printClause(const Clause& c) const
-{
- printf("(group: %d) ", c.group);
- for (uint i = 0; i < c.size();) {
- printLit(c[i]);
- i++;
- if (i < c.size()) printf(" ");
- }
-}
-
-void Solver::printClause(const XorClause& c) const
-{
- printf("(group: %d) ", c.group);
- if (c.xor_clause_inverted()) printf(" /inverted/ ");
- for (uint i = 0; i < c.size();) {
- printLit(c[i].unsign());
- i++;
- if (i < c.size()) printf(" + ");
- }
-}
-
-//=================================================================================================
-// Major methods:
-
-
-Lit Solver::pickBranchLit(int polarity_mode)
-{
- #ifdef VERBOSE_DEBUG
- cout << "decision level:" << decisionLevel() << " ";
- #endif
-
- Var next = var_Undef;
-
- // Random decision:
- if (mtrand.randDblExc() < random_var_freq && !order_heap.empty()) {
- if (restrictedPickBranch == 0) next = order_heap[mtrand.randInt(order_heap.size()-1)];
- else next = order_heap[mtrand.randInt(std::min((uint32_t)order_heap.size()-1, restrictedPickBranch))];
-
- if (assigns[next] == l_Undef && decision_var[next])
- rnd_decisions++;
- }
-
- // Activity based decision:
- //bool dont_do_bad_decision = false;
- //if (restrictedPickBranch != 0) dont_do_bad_decision = (mtrand.randInt(100) != 0);
- while (next == var_Undef || assigns[next] != l_Undef || !decision_var[next])
- if (order_heap.empty()) {
- next = var_Undef;
- break;
- } else {
- next = order_heap.removeMin();
- }
-
- bool sign = false;
- switch (polarity_mode) {
- case polarity_true:
- sign = false;
- break;
- case polarity_false:
- sign = true;
- break;
- case polarity_user:
- if (next != var_Undef)
- sign = polarity[next];
- break;
- case polarity_rnd:
- sign = mtrand.randInt(1);
- break;
- default:
- assert(false);
- }
-
- assert(next == var_Undef || value(next) == l_Undef);
-
- if (next == var_Undef) {
- #ifdef VERBOSE_DEBUG
- cout << "SAT!" << endl;
- #endif
- return lit_Undef;
- } else {
- Lit lit(next,sign);
- #ifdef VERBOSE_DEBUG
- cout << "decided on: " << lit.var()+1 << " to set:" << !lit.sign() << endl;
- #endif
- return lit;
- }
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
-|
-| Description:
-| Analyze conflict and produce a reason clause.
-|
-| Pre-conditions:
-| * 'out_learnt' is assumed to be cleared.
-| * Current decision level must be greater than root level.
-|
-| Post-conditions:
-| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
-|
-| Effect:
-| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
-|________________________________________________________________________________________________@*/
-void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
-{
- int pathC = 0;
- Lit p = lit_Undef;
-
- // Generate conflict clause:
- //
- out_learnt.push(); // (leave room for the asserting literal)
- int index = trail.size() - 1;
- out_btlevel = 0;
-
- do {
- assert(confl != NULL); // (otherwise should be UIP)
- Clause& c = *confl;
-
- if (c.learnt())
- claBumpActivity(c);
-
- for (uint j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++) {
- const Lit& q = c[j];
- const uint my_var = q.var();
-
- if (!seen[my_var] && level[my_var] > 0) {
- if (!useRealUnknowns || (my_var < realUnknowns.size() && realUnknowns[my_var]))
- varBumpActivity(my_var);
- seen[my_var] = 1;
- if (level[my_var] >= decisionLevel())
- pathC++;
- else {
- out_learnt.push(q);
- if (level[my_var] > out_btlevel)
- out_btlevel = level[my_var];
- }
- }
- }
-
- // Select next clause to look at:
- while (!seen[trail[index--].var()]);
- p = trail[index+1];
- confl = reason[p.var()];
- seen[p.var()] = 0;
- pathC--;
-
- } while (pathC > 0);
- out_learnt[0] = ~p;
-
- // Simplify conflict clause:
- //
- int i, j;
- if (expensive_ccmin) {
- uint32_t abstract_level = 0;
- for (i = 1; i < out_learnt.size(); i++)
- abstract_level |= abstractLevel(out_learnt[i].var()); // (maintain an abstraction of levels involved in conflict)
-
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++)
- if (reason[out_learnt[i].var()] == NULL || !litRedundant(out_learnt[i], abstract_level))
- out_learnt[j++] = out_learnt[i];
- } else {
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++) {
- const Clause& c = *reason[out_learnt[i].var()];
- for (uint k = 1; k < c.size(); k++)
- if (!seen[c[k].var()] && level[c[k].var()] > 0) {
- out_learnt[j++] = out_learnt[i];
- break;
- }
- }
- }
- max_literals += out_learnt.size();
- out_learnt.shrink(i - j);
- tot_literals += out_learnt.size();
-
- // Find correct backtrack level:
- //
- if (out_learnt.size() == 1)
- out_btlevel = 0;
- else {
- int max_i = 1;
- for (int i = 2; i < out_learnt.size(); i++)
- if (level[out_learnt[i].var()] > level[out_learnt[max_i].var()])
- max_i = i;
- Lit p = out_learnt[max_i];
- out_learnt[max_i] = out_learnt[1];
- out_learnt[1] = p;
- out_btlevel = level[p.var()];
- }
-
-
- for (int j = 0; j < analyze_toclear.size(); j++) seen[analyze_toclear[j].var()] = 0; // ('seen[]' is now cleared)
-}
-
-
-// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
-// visiting literals at levels that cannot be removed later.
-bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
-{
- analyze_stack.clear();
- analyze_stack.push(p);
- int top = analyze_toclear.size();
- while (analyze_stack.size() > 0) {
- assert(reason[analyze_stack.last().var()] != NULL);
- const Clause& c = *reason[analyze_stack.last().var()];
- analyze_stack.pop();
-
- for (uint i = 1; i < c.size(); i++) {
- Lit p = c[i];
- if (!seen[p.var()] && level[p.var()] > 0) {
- if (reason[p.var()] != NULL && (abstractLevel(p.var()) & abstract_levels) != 0) {
- seen[p.var()] = 1;
- analyze_stack.push(p);
- analyze_toclear.push(p);
- } else {
- for (int j = top; j < analyze_toclear.size(); j++)
- seen[analyze_toclear[j].var()] = 0;
- analyze_toclear.shrink(analyze_toclear.size() - top);
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyzeFinal : (p : Lit) -> [void]
-|
-| Description:
-| Specialized analysis procedure to express the final conflict in terms of assumptions.
-| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
-| stores the result in 'out_conflict'.
-|________________________________________________________________________________________________@*/
-void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
-{
- out_conflict.clear();
- out_conflict.push(p);
-
- if (decisionLevel() == 0)
- return;
-
- seen[p.var()] = 1;
-
- for (int i = trail.size()-1; i >= trail_lim[0]; i--) {
- Var x = trail[i].var();
- if (seen[x]) {
- if (reason[x] == NULL) {
- assert(level[x] > 0);
- out_conflict.push(~trail[i]);
- } else {
- const Clause& c = *reason[x];
- for (uint j = 1; j < c.size(); j++)
- if (level[c[j].var()] > 0)
- seen[c[j].var()] = 1;
- }
- seen[x] = 0;
- }
- }
-
- seen[p.var()] = 0;
-}
-
-
-void Solver::uncheckedEnqueue(Lit p, Clause* from)
-{
- #ifdef VERBOSE_DEBUG
- cout << "uncheckedEnqueue var " << p.var()+1 << " to " << !p.sign() << " level: " << decisionLevel() << " sublevel:" << trail.size() << endl;
- #endif
-
- assert(value(p) == l_Undef);
- const Var v = p.var();
- assigns [v] = boolToLBool(!p.sign());//lbool(!sign(p)); // <<== abstract but not uttermost effecient
- level [v] = decisionLevel();
- reason [v] = from;
- polarity[p.var()] = p.sign();
- trail.push(p);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| propagate : [void] -> [Clause*]
-|
-| Description:
-| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
-| otherwise NULL.
-|
-| Post-conditions:
-| * the propagation queue is empty, even if there was a conflict.
-|________________________________________________________________________________________________@*/
-Clause* Solver::propagate(const bool xor_as_well)
-{
- Clause* confl = NULL;
- int num_props = 0;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagation started" << endl;
- #endif
-
- while (qhead < trail.size()) {
- Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
- vec<Clause*>& ws = watches[p.toInt()];
- Clause **i, **j, **end;
- num_props++;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagating lit " << (p.sign() ? '-' : ' ') << p.var()+1 << endl;
- #endif
-
- for (i = j = ws.getData(), end = i + ws.size(); i != end;) {
- Clause& c = **i++;
-
- // Make sure the false literal is data[1]:
- const Lit false_lit(~p);
- if (c[0] == false_lit)
- c[0] = c[1], c[1] = false_lit;
-
- assert(c[1] == false_lit);
-
- // If 0th watch is true, then clause is already satisfied.
- const Lit& first = c[0];
- if (value(first) == l_True) {
- *j++ = &c;
- } else {
- // Look for new watch:
- for (uint k = 2; k < c.size(); k++)
- if (value(c[k]) != l_False) {
- c[1] = c[k];
- c[k] = false_lit;
- watches[(~c[1]).toInt()].push(&c);
- goto FoundWatch;
- }
-
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
- if (value(first) == l_False) {
- confl = &c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- } else {
- uncheckedEnqueue(first, &c);
- if (dynamic_behaviour_analysis)
- logger.propagation(first,Logger::simple_propagation_type,c.group);
- }
- }
-FoundWatch:
- ;
- }
- ws.shrink(i - j);
-
- if (xor_as_well && !confl) confl = propagate_xors(p);
- }
- propagations += num_props;
- simpDB_props -= num_props;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagation ended." << endl;
- #endif
-
- return confl;
-}
-
-Clause* Solver::propagate_xors(const Lit& p)
-{
- #ifdef VERBOSE_DEBUG_XOR
- cout << "Xor-Propagating variable " << p.var()+1 << endl;
- #endif
-
- Clause* confl = NULL;
-
- vec<XorClause*>& ws = xorwatches[p.var()];
- XorClause **i, **j, **end;
- for (i = j = ws.getData(), end = i + ws.size(); i != end;) {
- XorClause& c = **i++;
-
- // Make sure the false literal is data[1]:
- if (c[0].var() == p.var()) {
- Lit tmp(c[0]);
- c[0] = c[1];
- c[1] = tmp;
- }
- assert(c[1].var() == p.var());
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "--> xor thing -- " << endl;
- printClause(c);
- cout << endl;
- #endif
- bool final = c.xor_clause_inverted();
- for (int k = 0, size = c.size(); k < size; k++ ) {
- const lbool& val = assigns[c[k].var()];
- if (val.isUndef() && k >= 2) {
- Lit tmp(c[1]);
- c[1] = c[k];
- c[k] = tmp;
- #ifdef VERBOSE_DEBUG_XOR
- cout << "new watch set" << endl << endl;
- #endif
- xorwatches[c[1].var()].push(&c);
- goto FoundWatch;
- }
-
- c[k] = c[k].unsign() ^ val.getBool();
- final ^= val.getBool();
- }
-
-
- {
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "final: " << std::boolalpha << final << " - ";
- #endif
- if (assigns[c[0].var()].isUndef()) {
- c[0] = c[0].unsign()^final;
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "propagating ";
- printLit(c[0]);
- cout << endl;
- cout << "propagation clause -- ";
- printClause(*(Clause*)&c);
- cout << endl << endl;
- #endif
-
- uncheckedEnqueue(c[0], (Clause*)&c);
- if (dynamic_behaviour_analysis)
- logger.propagation(c[0], Logger::simple_propagation_type, c.group);
- } else if (!final) {
-
- #ifdef VERBOSE_DEBUG_XOR
- printf("conflict clause -- ");
- printClause(*(Clause*)&c);
- cout << endl << endl;
- #endif
-
- confl = (Clause*)&c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- } else {
- #ifdef VERBOSE_DEBUG_XOR
- printf("xor satisfied\n");
- #endif
-
- Lit tmp(c[0]);
- c[0] = c[1];
- c[1] = tmp;
- }
- }
-FoundWatch:
- ;
- }
- ws.shrink(i - j);
-
- return confl;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| reduceDB : () -> [void]
-|
-| Description:
-| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
-| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
-|________________________________________________________________________________________________@*/
-struct reduceDB_lt {
- bool operator () (Clause* x, Clause* y) {
- return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity());
- }
-};
-void Solver::reduceDB()
-{
- int i, j;
- double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
-
- sort(learnts, reduceDB_lt());
- for (i = j = 0; i < learnts.size() / 2; i++) {
- if (learnts[i]->size() > 2 && !locked(*learnts[i]))
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- for (; i < learnts.size(); i++) {
- if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- learnts.shrink(i - j);
-}
-
-const vec<Clause*>& Solver::get_sorted_learnts()
-{
- sort(learnts, reduceDB_lt());
- return learnts;
-}
-
-const vec<Clause*>& Solver::get_unitary_learnts() const
-{
- return unitary_learnts;
-}
-
-void Solver::setMaxRestarts(const uint num)
-{
- maxRestarts = num;
-}
-
-template<class T>
-void Solver::removeSatisfied(vec<T*>& cs)
-{
- int i,j;
- for (i = j = 0; i < cs.size(); i++) {
- if (satisfied(*cs[i]))
- removeClause(*cs[i]);
- else
- cs[j++] = cs[i];
- }
- cs.shrink(i - j);
-}
-
-void Solver::cleanClauses(vec<Clause*>& cs)
-{
- uint useful = 0;
- for (int s = 0; s < cs.size(); s++) {
- Clause& c = *cs[s];
- Lit *i, *j, *end;
- uint at = 0;
- for (i = j = c.getData(), end = i + c.size(); i != end; i++, at++) {
- if (value(*i) == l_Undef) {
- *j = *i;
- j++;
- } else assert(at > 1);
- assert(value(*i) != l_True);
- }
- c.shrink(i-j);
- if (i-j > 0) useful++;
- }
- #ifdef VERBOSE_DEBUG
- cout << "cleanClauses(Clause) useful:" << useful << endl;
- #endif
-}
-
-void Solver::cleanClauses(vec<XorClause*>& cs)
-{
- uint useful = 0;
- for (int s = 0; s < cs.size(); s++) {
- XorClause& c = *cs[s];
- Lit *i, *j, *end;
- uint at = 0;
- for (i = j = c.getData(), end = i + c.size(); i != end; i++, at++) {
- const lbool& val = assigns[i->var()];
- if (val.isUndef()) {
- *j = *i;
- j++;
- } else /*assert(at>1),*/ c.invert(val.getBool());
- }
- c.shrink(i-j);
- if (i-j > 0) useful++;
- }
- #ifdef VERBOSE_DEBUG
- cout << "cleanClauses(XorClause) useful:" << useful << endl;
- #endif
-}
-
-/*_________________________________________________________________________________________________
-|
-| simplify : [void] -> [bool]
-|
-| Description:
-| Simplify the clause database according to the current top-level assigment. Currently, the only
-| thing done here is the removal of satisfied clauses, but more things can be put here.
-|________________________________________________________________________________________________@*/
-lbool Solver::simplify()
-{
- assert(decisionLevel() == 0);
-
- if (!ok || propagate() != NULL) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- ok = false;
- return l_False;
- }
-
- if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) {
- return l_Undef;
- }
-
- // Remove satisfied clauses:
- removeSatisfied(learnts);
- if (remove_satisfied) { // Can be turned off.
- removeSatisfied(clauses);
- removeSatisfied(xorclauses);
- }
-
- // Remove fixed variables from the variable heap:
- order_heap.filter(VarFilter(*this));
-
- simpDB_assigns = nAssigns();
- simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
-
- //cleanClauses(clauses);
- cleanClauses(xorclauses);
- //cleanClauses(learnts);
-
- return l_Undef;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
-|
-| Description:
-| Search for a model the specified number of conflicts, keeping the number of learnt clauses
-| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
-| indicate infinity.
-|
-| Output:
-| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
-| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
-| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
-|________________________________________________________________________________________________@*/
-lbool Solver::search(int nof_conflicts, int nof_learnts)
-{
- assert(ok);
- int conflictC = 0;
- vec<Lit> learnt_clause;
- llbool ret;
-
- starts++;
-
- if (dynamic_behaviour_analysis) logger.begin();
-
- for (;;) {
- Clause* confl = propagate();
-
- if (confl != NULL) {
- ret = handle_conflict(learnt_clause, confl, conflictC);
- if (ret != l_Nothing) return ret;
- } else {
- ret = new_decision(nof_conflicts, nof_learnts, conflictC);
- if (ret != l_Nothing) return ret;
- }
- }
-}
-
-llbool Solver::new_decision(int& nof_conflicts, int& nof_learnts, int& conflictC)
-{
- if (nof_conflicts >= 0 && conflictC >= nof_conflicts) {
- // Reached bound on number of conflicts:
- progress_estimate = progressEstimate();
- cancelUntil(0);
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::restarting);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_Undef;
- }
-
- // Simplify the set of problem clauses:
- if (decisionLevel() == 0 && simplify() == l_False) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- }
-
- if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
- // Reduce the set of learnt clauses:
- reduceDB();
-
- Lit next = lit_Undef;
- while (decisionLevel() < assumptions.size()) {
- // Perform user provided assumption:
- Lit p = assumptions[decisionLevel()];
- if (value(p) == l_True) {
- // Dummy decision level:
- newDecisionLevel();
- if (dynamic_behaviour_analysis) logger.propagation(p, Logger::assumption_type);
- } else if (value(p) == l_False) {
- analyzeFinal(~p, conflict);
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- } else {
- next = p;
- break;
- }
- }
-
- if (next == lit_Undef) {
- // New variable decision:
- decisions++;
- next = pickBranchLit(polarity_mode);
-
- if (next == lit_Undef) {
- // Model found:
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_True;
- }
- }
-
- // Increase decision level and enqueue 'next'
- assert(value(next) == l_Undef);
- newDecisionLevel();
- uncheckedEnqueue(next);
- if (dynamic_behaviour_analysis) logger.propagation(next, Logger::guess_type);
-
- return l_Nothing;
-}
-
-llbool Solver::handle_conflict(vec<Lit>& learnt_clause, Clause* confl, int& conflictC)
-{
- #ifdef VERBOSE_DEBUG
- cout << "Handling conflict: ";
- for (uint i = 0; i < learnt_clause.size(); i++)
- cout << learnt_clause[i].var()+1 << ",";
- cout << endl;
- #endif
-
- int backtrack_level;
-
- conflicts++;
- conflictC++;
- if (decisionLevel() == 0) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- }
- learnt_clause.clear();
- analyze(confl, learnt_clause, backtrack_level);
- cancelUntil(backtrack_level);
- if (dynamic_behaviour_analysis)
- logger.conflict(Logger::simple_confl_type, backtrack_level, confl->group, learnt_clause);
-
- #ifdef VERBOSE_DEBUG
- cout << "Learning:";
- for (uint i = 0; i < learnt_clause.size(); i++) printLit(learnt_clause[i]), cout << " ";
- cout << endl;
- cout << "reverting var " << learnt_clause[0].var()+1 << " to " << !learnt_clause[0].sign() << endl;
- #endif
-
- assert(value(learnt_clause[0]) == l_Undef);
- //Unitary learnt
- if (learnt_clause.size() == 1) {
- Clause* c = Clause_new(learnt_clause, learnt_clause_group++, true);
- unitary_learnts.push(c);
- uncheckedEnqueue(learnt_clause[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation(learnt_clause[0], Logger::learnt_unit_clause_type);
- assert(backtrack_level == 0 && "Unit clause learnt, so must cancel until level 0, right?");
-
- #ifdef VERBOSE_DEBUG
- cout << "Unit clause learnt." << endl;
- #endif
- //Normal learnt
- } else {
- Clause* c = Clause_new(learnt_clause, learnt_clause_group++, true);
- learnts.push(c);
- attachClause(*c);
- claBumpActivity(*c);
- uncheckedEnqueue(learnt_clause[0], c);
-
- if (dynamic_behaviour_analysis) {
- logger.propagation(learnt_clause[0], Logger::revert_guess_type, c->group);
- logger.new_group(c->group);
- logger.set_group_name(c->group, "learnt clause");
- }
- }
-
- varDecayActivity();
- claDecayActivity();
-
- return l_Nothing;
-}
-
-
-double Solver::progressEstimate() const
-{
- double progress = 0;
- double F = 1.0 / nVars();
-
- for (int i = 0; i <= decisionLevel(); i++) {
- int beg = i == 0 ? 0 : trail_lim[i - 1];
- int end = i == decisionLevel() ? trail.size() : trail_lim[i];
- progress += pow(F, i) * (end - beg);
- }
-
- return progress / nVars();
-}
-
-
-lbool Solver::solve(const vec<Lit>& assumps)
-{
- model.clear();
- conflict.clear();
-
- if (!ok) return l_False;
-
- assumps.copyTo(assumptions);
-
- double nof_conflicts = restart_first;
- double nof_learnts = nClauses() * learntsize_factor;
- lbool status = l_Undef;
-
- if (verbosity >= 1) {
- printf("============================[ Search Statistics ]==============================\n");
- printf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
- printf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
- printf("===============================================================================\n");
- }
-
- // Search:
- while (status == l_Undef && starts < maxRestarts) {
- if (verbosity >= 1 && !(dynamic_behaviour_analysis && logger.statistics_on)) {
- printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
- printf("\n");
- }
- status = search((int)nof_conflicts, (int)nof_learnts);
- nof_conflicts *= restart_inc;
- nof_learnts *= learntsize_inc;
- }
-
- if (verbosity >= 1) {
- printf("===============================================================================");
- printf("\n");
- }
-
- if (status == l_True) {
- // Extend & copy model:
- model.growTo(nVars());
- for (int i = 0; i < nVars(); i++) model[i] = value(i);
-#ifndef NDEBUG
- verifyModel();
-#endif
- } if (status == l_False) {
- if (conflict.size() == 0)
- ok = false;
- }
-
- cancelUntil(0);
- return status;
-}
-
-//=================================================================================================
-// Debug methods:
-
-
-void Solver::verifyModel()
-{
- bool failed = false;
- for (int i = 0; i < clauses.size(); i++) {
- Clause& c = *clauses[i];
- for (uint j = 0; j < c.size(); j++)
- if (modelValue(c[j]) == l_True)
- goto next;
-
- printf("unsatisfied clause: ");
- printClause(*clauses[i]);
- printf("\n");
- failed = true;
-next:
- ;
- }
-
- for (int i = 0; i < xorclauses.size(); i++) {
- XorClause& c = *xorclauses[i];
- bool final = c.xor_clause_inverted();
- for (uint j = 0; j < c.size(); j++)
- final ^= (modelValue(c[j].unsign()) == l_True);
- if (!final) {
- printf("unsatisfied clause: ");
- printClause(*xorclauses[i]);
- printf("\n");
- failed = true;
- }
- }
-
- assert(!failed);
-
- //printf("Verified %d original clauses.\n", clauses.size() + xorclauses.size());
-}
-
-
-void Solver::checkLiteralCount()
-{
- // Check that sizes are calculated correctly:
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- cnt += clauses[i]->size();
-
- for (int i = 0; i < xorclauses.size(); i++)
- cnt += xorclauses[i]->size();
-
- if ((int)clauses_literals != cnt) {
- fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
- assert((int)clauses_literals == cnt);
- }
-}
-};
+++ /dev/null
-/****************************************************************************************[Solver.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Solver_h
-#define Solver_h
-
-#include <cstdio>
-#include "mtl/Vec.h"
-#include "mtl/Heap.h"
-#include "mtl/Alg.h"
-#include "Logger.h"
-#include "MTRand/MersenneTwister.h"
-#include "SolverTypes.h"
-#include "clause.h"
-#include <string.h>
-
-#ifdef _MSC_VER
- #include <ctime>
-#else
- #include <sys/time.h>
- #include <sys/resource.h>
- #include <unistd.h>
-#endif
-
-namespace MINISAT
-{
-
-//#define VERBOSE_DEBUG_XOR
-//#define VERBOSE_DEBUG
-
-//=================================================================================================
-// Solver -- the main class:
-
-
-class Solver
-{
-public:
-
- // Constructor/Destructor:
- //
- Solver();
- ~Solver();
-
- // Problem specification:
- //
- Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
- bool addClause (vec<Lit>& ps, const uint group, const char* group_name); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
- bool addXorClause (vec<Lit>& ps, bool xor_clause_inverted, const uint group, const char* group_name); // Add a xor-clause to the solver. NOTE! 'ps' may be shrunk by this method!
-
- // Solving:
- //
- lbool simplify (); // Removes already satisfied clauses.
- lbool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
- lbool solve (); // Search without assumptions.
- bool okay () const; // FALSE means solver is in a conflicting state
-
- // Variable mode:
- //
- void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
- void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
- void setSeed (const uint32_t seed); // Sets the seed to be the given number
- void permutateClauses(); // Permutates the clauses using the seed. It updates the seed in mtrand
- void needRealUnknowns(); // Uses the "real unknowns" set by setRealUnknown
- void setRealUnknown(const uint var); //sets a variable to be 'real', i.e. to preferentially branch on it during solving (when useRealUnknown it turned on)
- void setMaxRestarts(const uint num); //sets the maximum number of restarts to given value
-
- // Read state:
- //
- lbool value (const Var& x) const; // The current value of a variable.
- lbool value (const Lit& p) const; // The current value of a literal.
- lbool modelValue (const Lit& p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
- int nAssigns () const; // The current number of assigned literals.
- int nClauses () const; // The current number of original clauses.
- int nLearnts () const; // The current number of learnt clauses.
- int nVars () const; // The current number of variables.
-
- // Extra results: (read-only member variable)
- //
- vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
- vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
- // this vector represent the final conflict clause expressed in the assumptions.
-
- // Mode of operation:
- //
- double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
- double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
- double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
- int restart_first; // The initial restart limit. (default 100)
- double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
- double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
- double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
- bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
- int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
- int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
- uint restrictedPickBranch; // Pick variables to branch on preferentally from the highest [0, restrictedPickBranch]. If set to 0, preferentiality is turned off (i.e. picked randomly between [0, all])
- bool useRealUnknowns; // Whether 'real unknown' optimization should be used. If turned on, VarActivity is only bumped for variables for which the real_unknowns[var] == true
- vector<bool> realUnknowns; // The important variables. This vector stores 'false' at realUnknowns[var] if the var is not a real unknown, and stores a 'true' if it is a real unkown. If var is larger than realUnkowns.size(), then it is not an important variable
-
- enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
-
- // Statistics: (read-only member variable)
- //
- uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
- uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
-
- //Logging
- void needStats(); // Prepares the solver to output statistics
- void needProofGraph(); // Prepares the solver to output proof graphs during solving
- void setVariableName(int var, const char* name); // Sets the name of the variable 'var' to 'name'. Useful for statistics and proof logs (i.e. used by 'logger')
- void startClauseAdding(); // Before adding clauses, but after setting up the Solver (need* functions, verbosity), this should be called
- void endFirstSimplify(); // After the clauses are added, and the first simplify() is called, this must be called
- const vec<Clause*>& get_sorted_learnts(); //return the set of learned clauses
- const vec<Clause*>& get_unitary_learnts() const; //return the set of unitary learned clauses
-
-protected:
- // Helper structures:
- //
- struct VarOrderLt {
- const vec<double>& activity;
- bool operator () (Var x, Var y) const {
- return activity[x] > activity[y];
- }
- VarOrderLt(const vec<double>& act) : activity(act) { }
- };
-
- friend class VarFilter;
- struct VarFilter {
- const Solver& s;
- VarFilter(const Solver& _s) : s(_s) {}
- bool operator()(Var v) const {
- return s.assigns[v].isUndef() && s.decision_var[v];
- }
- };
-
- // Solver state:
- //
- bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
- vec<Clause*> clauses; // List of problem clauses.
- vec<XorClause*> xorclauses; // List of problem xor-clauses.
- vec<Clause*> learnts; // List of learnt clauses.
- vec<Clause*> unitary_learnts; // List of learnt clauses.
- double cla_inc; // Amount to bump next clause with.
- vec<double> activity; // A heuristic measurement of the activity of a variable.
- double var_inc; // Amount to bump next variable with.
- vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
- vec<vec<XorClause*> > xorwatches; // 'xorwatches[var]' is a list of constraints watching var in XOR clauses.
- vec<lbool> assigns; // The current assignments
- vec<char> polarity; // The preferred polarity of each variable.
- vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
- vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
- vec<int32_t> trail_lim; // Separator indices for different decision levels in 'trail'.
- vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
- vec<int32_t> level; // 'level[var]' contains the level at which the assignment was made.
- int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
- int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
- int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
- vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
- Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
- double progress_estimate;// Set by 'search()'.
- bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
- MTRand mtrand; // random number generator
- Logger logger; // dynamic logging, statistics
- bool dynamic_behaviour_analysis; //should 'logger' be called whenever a propagation/conflict/decision is made?
- uint maxRestarts; // More than this number of restarts will not be performed
-
- // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
- // used, exept 'seen' wich is used in several places.
- //
- vec<char> seen;
- vec<Lit> analyze_stack;
- vec<Lit> analyze_toclear;
- vec<Lit> add_tmp;
-
- //Logging
- uint learnt_clause_group; //the group number of learnt clauses. Incremented at each added learnt clause
-
- // Main internal methods:
- //
- void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
- Lit pickBranchLit (int polarity_mode); // Return the next decision variable.
- void newDecisionLevel (); // Begins a new decision level.
- void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
- bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
- Clause* propagate (const bool xor_as_well = true); // Perform unit propagation. Returns possibly conflicting clause.
- Clause* propagate_xors (const Lit& p);
- void cancelUntil (int level); // Backtrack until a certain level.
- void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
- void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
- bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
- lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
- void reduceDB (); // Reduce the set of learnt clauses.
- template<class T>
- void removeSatisfied (vec<T*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
- void cleanClauses (vec<XorClause*>& cs);
- void cleanClauses (vec<Clause*>& cs); // Remove TRUE or FALSE variables from the xor clauses and remove the FALSE variables from the normal clauses
- llbool handle_conflict (vec<Lit>& learnt_clause, Clause* confl, int& conflictC);// Handles the conflict clause
- llbool new_decision (int& nof_conflicts, int& nof_learnts, int& conflictC); // Handles the case when all propagations have been made, and now a decision must be made
-
- // Maintaining Variable/Clause activity:
- //
- void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
- void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
- void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
- void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
-
- // Operations on clauses:
- //
- void attachClause (XorClause& c);
- void attachClause (Clause& c); // Attach a clause to watcher lists.
- void detachClause (const XorClause& c);
- void detachClause (const Clause& c); // Detach a clause to watcher lists.
- template<class T>
- void removeClause(T& c); // Detach and free a clause.
- bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
- bool satisfied (const XorClause& c) const; // Returns TRUE if the clause is satisfied in the current state
- bool satisfied (const Clause& c) const; // Returns TRUE if the clause is satisfied in the current state.
-
- // Misc:
- //
- int decisionLevel () const; // Gives the current decisionlevel.
- uint32_t abstractLevel (const Var& x) const; // Used to represent an abstraction of sets of decision levels.
- double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
-
- // Debug:
- void printLit (const Lit l) const;
- void printClause (const Clause& c) const;
- void printClause (const XorClause& c) const;
- void verifyModel ();
- void checkLiteralCount();
-};
-
-
-//=================================================================================================
-// Implementation of inline methods:
-
-
-inline void Solver::insertVarOrder(Var x)
-{
- if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x);
-}
-
-inline void Solver::varDecayActivity()
-{
- var_inc *= var_decay;
-}
-inline void Solver::varBumpActivity(Var v)
-{
- if ( (activity[v] += var_inc) > 1e100 ) {
- // Rescale:
- for (int i = 0; i < nVars(); i++)
- activity[i] *= 1e-100;
- var_inc *= 1e-100;
- }
-
- // Update order_heap with respect to new activity:
- if (order_heap.inHeap(v))
- order_heap.decrease(v);
-}
-
-inline void Solver::claDecayActivity()
-{
- cla_inc *= clause_decay;
-}
-inline void Solver::claBumpActivity (Clause& c)
-{
- if ( (c.activity() += cla_inc) > 1e20 ) {
- // Rescale:
- for (int i = 0; i < learnts.size(); i++)
- learnts[i]->activity() *= 1e-20;
- cla_inc *= 1e-20;
- }
-}
-
-inline bool Solver::enqueue (Lit p, Clause* from)
-{
- return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true);
-}
-inline bool Solver::locked (const Clause& c) const
-{
- return reason[c[0].var()] == &c && value(c[0]) == l_True;
-}
-inline void Solver::newDecisionLevel()
-{
- trail_lim.push(trail.size());
- #ifdef VERBOSE_DEBUG
- std::cout << "New decision level:" << trail_lim.size() << std::endl;
- #endif
-}
-inline int Solver::decisionLevel () const
-{
- return trail_lim.size();
-}
-inline uint32_t Solver::abstractLevel (const Var& x) const
-{
- return 1 << (level[x] & 31);
-}
-inline lbool Solver::value (const Var& x) const
-{
- return assigns[x];
-}
-inline lbool Solver::value (const Lit& p) const
-{
- return assigns[p.var()] ^ p.sign();
-}
-inline lbool Solver::modelValue (const Lit& p) const
-{
- return model[p.var()] ^ p.sign();
-}
-inline int Solver::nAssigns () const
-{
- return trail.size();
-}
-inline int Solver::nClauses () const
-{
- return clauses.size() + xorclauses.size();
-}
-inline int Solver::nLearnts () const
-{
- return learnts.size();
-}
-inline int Solver::nVars () const
-{
- return assigns.size();
-}
-inline void Solver::setPolarity (Var v, bool b)
-{
- polarity [v] = (char)b;
-}
-inline void Solver::setDecisionVar(Var v, bool b)
-{
- decision_var[v] = (char)b;
- if (b) {
- insertVarOrder(v);
- }
-}
-inline lbool Solver::solve ()
-{
- vec<Lit> tmp;
- return solve(tmp);
-}
-inline bool Solver::okay () const
-{
- return ok;
-}
-inline void Solver::setSeed (const uint32_t seed)
-{
- mtrand.seed(seed); // Set seed of the variable-selection and clause-permutation(if applicable)
-}
-inline void Solver::needStats()
-{
- dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate statistics
- logger.statistics_on = true;
-}
-inline void Solver::needProofGraph()
-{
- dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate proof graphs during solving
- logger.proof_graph_on = true;
-}
-inline void Solver::setVariableName(int var, const char* name)
-{
- while (var >= nVars()) newVar();
- logger.set_variable_name(var, name);
-} // Sets the varible 'var'-s name to 'name' in the logger
-inline void Solver::startClauseAdding()
-{
- if (dynamic_behaviour_analysis) logger.begin(); // Needs to be called before adding any clause
-}
-inline void Solver::endFirstSimplify()
-{
- if (dynamic_behaviour_analysis) logger.end(Logger::done_adding_clauses); // Needs to be called before adding any clause
-}
-inline void Solver::needRealUnknowns()
-{
- useRealUnknowns = true;
-}
-
-
-//=================================================================================================
-// Debug + etc:
-
-static inline void logLit(FILE* f, Lit l)
-{
- fprintf(f, "%sx%d", l.sign() ? "~" : "", l.var()+1);
-}
-
-static inline void logLits(FILE* f, const vec<Lit>& ls)
-{
- fprintf(f, "[ ");
- if (ls.size() > 0) {
- logLit(f, ls[0]);
- for (int i = 1; i < ls.size(); i++) {
- fprintf(f, ", ");
- logLit(f, ls[i]);
- }
- }
- fprintf(f, "] ");
-}
-
-static inline const char* showBool(bool b)
-{
- return b ? "true" : "false";
-}
-
-
-// Just like 'assert()' but expression will be evaluated in the release version as well.
-static inline void check(bool expr)
-{
- assert(expr);
-}
-
-};
-
-//=================================================================================================
-#endif
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-#ifndef SolverTypes_h
-#define SolverTypes_h
-
-#include <cassert>
-#include <stdint.h>
-#include "mtl/Alg.h"
-
-
-namespace MINISAT
-{
-//=================================================================================================
-// Variables, literals, lifted booleans, clauses:
-
-
-// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
-// so that they can be used as array indices.
-
-typedef uint32_t Var;
-#define var_Undef (0xffffffffU >>1)
-
-class Lit
-{
- uint32_t x;
- explicit Lit(uint32_t i) : x(i) { };
-public:
- Lit() : x(2*var_Undef) {} // (lit_Undef)
- explicit Lit(Var var, bool sign) : x((var+var) + (int)sign) { }
-
- const uint32_t& toInt() const { // Guarantees small, positive integers suitable for array indexing.
- return x;
- }
- Lit operator~() const {
- return Lit(x ^ 1);
- }
- Lit operator^(const bool b) const {
- return Lit(x ^ b);
- }
- Lit& operator^=(const bool b) {
- x ^= b;
- return *this;
- }
- bool sign() const {
- return x & 1;
- }
- Var var() const {
- return x >> 1;
- }
- Lit unsign() const {
- return Lit(x & ~1);
- }
- bool operator==(const Lit& p) const {
- return x == p.x;
- }
- bool operator!= (const Lit& p) const {
- return x != p.x;
- }
- bool operator < (const Lit& p) const {
- return x < p.x; // '<' guarantees that p, ~p are adjacent in the ordering.
- }
-};
-
-const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
-const Lit lit_Error(var_Undef, true ); // }
-
-//=================================================================================================
-// Lifted booleans:
-
-class llbool;
-
-class lbool
-{
- char value;
- explicit lbool(char v) : value(v) { }
-
-public:
- lbool() : value(0) { };
- inline char getchar() const {
- return value;
- }
- inline lbool(llbool b);
-
- inline const bool isUndef() const {
- return !value;
- }
- inline const bool isDef() const {
- return value;
- }
- inline const bool getBool() const {
- return (value+1) >> 1;
- }
- inline const bool operator==(lbool b) const {
- return value == b.value;
- }
- inline const bool operator!=(lbool b) const {
- return value != b.value;
- }
- lbool operator^(const bool b) const {
- return lbool(value - value*2*b);
- }
- //lbool operator ^ (const bool b) const { return b ? lbool(-value) : lbool(value); }
-
- friend lbool toLbool(const char v);
- friend lbool boolToLBool(const bool b);
- friend class llbool;
-};
-inline lbool toLbool(const char v)
-{
- return lbool(v);
-}
-inline lbool boolToLBool(const bool b)
-{
- return lbool(2*b-1);
-}
-
-const lbool l_True = toLbool( 1);
-const lbool l_False = toLbool(-1);
-const lbool l_Undef = toLbool( 0);
-
-
-class llbool
-{
- char value;
-
-public:
- llbool(): value(0) {};
- llbool(lbool v) :
- value(v.value) {};
- llbool(char a) :
- value(a) {}
-
- inline const bool operator!=(const llbool& v) const {
- return (v.value != value);
- }
-
- inline const bool operator==(const llbool& v) const {
- return (v.value == value);
- }
-
- friend class lbool;
-};
-const llbool l_Nothing = toLbool(2);
-const llbool l_Continue = toLbool(3);
-
-lbool::lbool(llbool b) : value(b.value) {};
-};
-
-#endif
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "clause.h"
-
-namespace MINISAT
-{
-
-Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, group, learnt);
- return real;
-}
-
-Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, group, learnt);
- return real;
-}
-
-#ifdef USE_GAUSS
-Clause* Clause_new(const mpz_class& ps, const vec<lbool>& assigns, const vector<uint>& col_to_var_original, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, assigns, col_to_var_original, group, learnt);
- return real;
-}
-#endif
-}
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef __clause_h__
-#define __clause_h__
-
-#include <stdint.h>
-#include <cstdio>
-#include <vector>
-//#include <sys/types.h>
-#include "mtl/Vec.h"
-#include "SolverTypes.h"
-
-namespace MINISAT
-{
-
-#ifndef uint
-#define uint unsigned int
-#endif
-
-using std::vector;
-
-
-//=================================================================================================
-// Clause -- a simple class for representing a clause:
-
-
-class Clause
-{
-public:
- const uint group;
-protected:
- uint32_t size_etc;
- float act;
- Lit data[0];
-
-public:
- Clause(const vec<Lit>& ps, const uint _group, const bool learnt) :
- group(_group) {
- size_etc = (ps.size() << 4) | (uint32_t)learnt ;
- for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
- if (learnt) act = 0;
- }
-
- Clause(const vector<Lit>& ps, const uint _group, const bool learnt) :
- group(_group) {
- size_etc = (ps.size() << 4) | (uint32_t)learnt ;
- for (uint i = 0; i < ps.size(); i++) data[i] = ps[i];
- if (learnt) act = 0;
- }
-
- // -- use this function instead:
- friend Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt = false);
- friend Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt = false);
-
- uint size () const {
- return size_etc >> 4;
- }
- void shrink (uint i) {
- assert(i <= size());
- size_etc = (((size_etc >> 4) - i) << 4) | (size_etc & 15);
- }
- void pop () {
- shrink(1);
- }
- bool learnt () const {
- return size_etc & 1;
- }
- uint32_t mark () const {
- return (size_etc >> 1) & 3;
- }
- void mark (uint32_t m) {
- size_etc = (size_etc & ~6) | ((m & 3) << 1);
- }
-
- Lit& operator [] (uint32_t i) {
- return data[i];
- }
- const Lit& operator [] (uint32_t i) const {
- return data[i];
- }
-
- float& activity () {
- return act;
- }
-
- Lit* getData () {
- return data;
- }
- void print() {
- Clause& c = *this;
- printf("group: %d, size: %d, learnt:%d, lits:\"", c.group, c.size(), c.learnt());
- for (uint i = 0; i < c.size(); i++) {
- if (c[i].sign()) printf("-");
- printf("%d ", c[i].var());
- }
- printf("\"\n");
- }
-};
-
-class XorClause : public Clause
-{
-public:
- // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
- template<class V>
- XorClause(const V& ps, const bool _xor_clause_inverted, const uint _group, const bool learnt) :
- Clause(ps, _group, learnt) {
- size_etc |= (((uint32_t)_xor_clause_inverted) << 3);
- }
-
- // -- use this function instead:
- template<class V>
- friend XorClause* XorClause_new(const V& ps, const bool xor_clause_inverted, const uint group, const bool learnt = false) {
- void* mem = malloc(sizeof(XorClause) + sizeof(Lit)*(ps.size()));
- XorClause* real= new (mem) XorClause(ps, xor_clause_inverted, group, learnt);
- return real;
- }
-
- inline bool xor_clause_inverted() const {
- return size_etc & 8;
- }
- inline void invert (bool b) {
- size_etc ^= (uint32_t)b << 3;
- }
-
- void print() {
- Clause& c = *this;
- printf("group: %d, size: %d, learnt:%d, lits:\"", c.group, c.size(), c.learnt());
- for (uint i = 0; i < c.size();) {
- assert(!c[i].sign());
- printf("%d", c[i].var());
- i++;
- if (i < c.size()) printf(" + ");
- }
- printf("\"\n");
- }
-};
-
-Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt);
-Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt);
-};
-
-#endif
+++ /dev/null
-
-#include <stdio.h>
-#include <string.h>
-#include "fcopy.h"
-
-
-namespace MINISAT
-{
-#define BUFSZ 16000
-
-int FileCopy ( const char *src, const char *dst )
-{
- char *buf;
- FILE *fi;
- FILE *fo;
- unsigned amount;
- unsigned written;
- int result;
-
- buf = new char[BUFSZ];
-
- fi = fopen( src, "rb" );
- fo = fopen( dst, "wb" );
-
- result = COPY_OK;
- if ((fi == NULL) || (fo == NULL) ) {
- result = COPY_ERROR;
- if (fi != NULL) fclose(fi);
- if (fo != NULL) fclose(fo);
- }
-
- if (result == COPY_OK) {
- do {
- amount = fread( buf, sizeof(char), BUFSZ, fi );
- if (amount) {
- written = fwrite( buf, sizeof(char), amount, fo );
- if (written != amount)
- result = COPY_ERROR; // out of disk space or some other disk err?
- }
- } // when amount read is < BUFSZ, copy
- while ((result == COPY_OK) && (amount == BUFSZ));
- fclose(fi);
- fclose(fo);
- }
-
- delete[] buf;
-
- return(result);
-}
-
-};
+++ /dev/null
-#ifndef __FCOPY_H__
-#define __FCOPY_H__
-
-namespace MINISAT
-{
-
-#define COPY_ERROR -1
-#define COPY_OK 0
-
-int FileCopy( const char *src, const char *dst );
-
-};
-
-#endif
+++ /dev/null
-/*******************************************************************************************[Alg.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Alg_h
-#define Alg_h
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// Useful functions on vectors
-
-
-#if 1
-template<class V, class T>
-static inline void remove(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++);
- assert(j < ts.size());
- for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
- ts.pop();
-}
-#else
-template<class V, class T>
-static inline void remove(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++);
- assert(j < ts.size());
- ts[j] = ts.last();
- ts.pop();
-}
-#endif
-
-template<class V, class T>
-static inline bool find(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++);
- return j < ts.size();
-}
-
-};
-
-#endif
+++ /dev/null
-/******************************************************************************************[Heap.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef BasicHeap_h
-#define BasicHeap_h
-#include "Vec.h"
-
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// A heap implementation with support for decrease/increase key.
-
-
-template<class Comp>
-class BasicHeap {
- Comp lt;
- vec<int> heap; // heap of ints
-
- // Index "traversal" functions
- static inline int left (int i) { return i*2+1; }
- static inline int right (int i) { return (i+1)*2; }
- static inline int parent(int i) { return (i-1) >> 1; }
-
- inline void percolateUp(int i)
- {
- int x = heap[i];
- while (i != 0 && lt(x, heap[parent(i)])){
- heap[i] = heap[parent(i)];
- i = parent(i);
- }
- heap [i] = x;
- }
-
-
- inline void percolateDown(int i)
- {
- int x = heap[i];
- while (left(i) < heap.size()){
- int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
- if (!lt(heap[child], x)) break;
- heap[i] = heap[child];
- i = child;
- }
- heap[i] = x;
- }
-
-
- bool heapProperty(int i) {
- return i >= heap.size()
- || ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
-
-
- public:
- BasicHeap(const C& c) : comp(c) { }
-
- int size () const { return heap.size(); }
- bool empty () const { return heap.size() == 0; }
- int operator[](int index) const { return heap[index+1]; }
- void clear (bool dealloc = false) { heap.clear(dealloc); }
- void insert (int n) { heap.push(n); percolateUp(heap.size()-1); }
-
-
- int removeMin() {
- int r = heap[0];
- heap[0] = heap.last();
- heap.pop();
- if (heap.size() > 1) percolateDown(0);
- return r;
- }
-
-
- // DEBUG: consistency checking
- bool heapProperty() {
- return heapProperty(1); }
-
-
- // COMPAT: should be removed
- int getmin () { return removeMin(); }
-};
-
-};
-
-//=================================================================================================
-#endif
+++ /dev/null
-/*******************************************************************************************[Vec.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef BoxedVec_h
-#define BoxedVec_h
-
-#include <cstdlib>
-#include <cassert>
-#include <new>
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// Automatically resizable arrays
-//
-// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
-
-template<class T>
-class bvec {
-
- static inline int imin(int x, int y) {
- int mask = (x-y) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- static inline int imax(int x, int y) {
- int mask = (y-x) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- struct Vec_t {
- int sz;
- int cap;
- T data[0];
-
- static Vec_t* alloc(Vec_t* x, int size){
- x = (Vec_t*)realloc((void*)x, sizeof(Vec_t) + sizeof(T)*size);
- x->cap = size;
- return x;
- }
-
- };
-
- Vec_t* ref;
-
- static const int init_size = 2;
- static int nextSize (int current) { return (current * 3 + 1) >> 1; }
- static int fitSize (int needed) { int x; for (x = init_size; needed > x; x = nextSize(x)); return x; }
-
- void fill (int size) {
- assert(ref != NULL);
- for (T* i = ref->data; i < ref->data + size; i++)
- new (i) T();
- }
-
- void fill (int size, const T& pad) {
- assert(ref != NULL);
- for (T* i = ref->data; i < ref->data + size; i++)
- new (i) T(pad);
- }
-
- // Don't allow copying (error prone):
- altvec<T>& operator = (altvec<T>& other) { assert(0); }
- altvec (altvec<T>& other) { assert(0); }
-
-public:
- void clear (bool dealloc = false) {
- if (ref != NULL){
- for (int i = 0; i < ref->sz; i++)
- (*ref).data[i].~T();
-
- if (dealloc) {
- free(ref); ref = NULL;
- }else
- ref->sz = 0;
- }
- }
-
- // Constructors:
- altvec(void) : ref (NULL) { }
- altvec(int size) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size); ref->sz = size; }
- altvec(int size, const T& pad) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size, pad); ref->sz = size; }
- ~altvec(void) { clear(true); }
-
- // Ownership of underlying array:
- operator T* (void) { return ref->data; } // (unsafe but convenient)
- operator const T* (void) const { return ref->data; }
-
- // Size operations:
- int size (void) const { return ref != NULL ? ref->sz : 0; }
-
- void pop (void) { assert(ref != NULL && ref->sz > 0); int last = --ref->sz; ref->data[last].~T(); }
- void push (const T& elem) {
- int size = ref != NULL ? ref->sz : 0;
- int cap = ref != NULL ? ref->cap : 0;
- if (size == cap){
- cap = cap != 0 ? nextSize(cap) : init_size;
- ref = Vec_t::alloc(ref, cap);
- }
- //new (&ref->data[size]) T(elem);
- ref->data[size] = elem;
- ref->sz = size+1;
- }
-
- void push () {
- int size = ref != NULL ? ref->sz : 0;
- int cap = ref != NULL ? ref->cap : 0;
- if (size == cap){
- cap = cap != 0 ? nextSize(cap) : init_size;
- ref = Vec_t::alloc(ref, cap);
- }
- new (&ref->data[size]) T();
- ref->sz = size+1;
- }
-
- void shrink (int nelems) { for (int i = 0; i < nelems; i++) pop(); }
- void shrink_(int nelems) { for (int i = 0; i < nelems; i++) pop(); }
- void growTo (int size) { while (this->size() < size) push(); }
- void growTo (int size, const T& pad) { while (this->size() < size) push(pad); }
- void capacity (int size) { growTo(size); }
-
- const T& last (void) const { return ref->data[ref->sz-1]; }
- T& last (void) { return ref->data[ref->sz-1]; }
-
- // Vector interface:
- const T& operator [] (int index) const { return ref->data[index]; }
- T& operator [] (int index) { return ref->data[index]; }
-
- void copyTo(altvec<T>& copy) const { copy.clear(); for (int i = 0; i < size(); i++) copy.push(ref->data[i]); }
- void moveTo(altvec<T>& dest) { dest.clear(true); dest.ref = ref; ref = NULL; }
-
-};
-
-};
-
-#endif
+++ /dev/null
-/******************************************************************************************[Heap.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Heap_h
-#define Heap_h
-
-#include "Vec.h"
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// A heap implementation with support for decrease/increase key.
-
-
-template<class Comp>
-class Heap {
- Comp lt;
- vec<int> heap; // heap of ints
- vec<int> indices; // int -> index in heap
-
- // Index "traversal" functions
- static inline int left (int i) { return i*2+1; }
- static inline int right (int i) { return (i+1)*2; }
- static inline int parent(int i) { return (i-1) >> 1; }
-
-
- inline void percolateUp(int i)
- {
- int x = heap[i];
- while (i != 0 && lt(x, heap[parent(i)])){
- heap[i] = heap[parent(i)];
- indices[heap[i]] = i;
- i = parent(i);
- }
- heap [i] = x;
- indices[x] = i;
- }
-
-
- inline void percolateDown(int i)
- {
- int x = heap[i];
- while (left(i) < heap.size()){
- int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
- if (!lt(heap[child], x)) break;
- heap[i] = heap[child];
- indices[heap[i]] = i;
- i = child;
- }
- heap [i] = x;
- indices[x] = i;
- }
-
-
- bool heapProperty (int i) const {
- return i >= heap.size()
- || ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
-
-
- public:
- Heap(const Comp& c) : lt(c) { }
-
- int size () const { return heap.size(); }
- bool empty () const { return heap.size() == 0; }
- bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
- int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
-
- void decrease (int n) { assert(inHeap(n)); percolateUp(indices[n]); }
-
- // RENAME WHEN THE DEPRECATED INCREASE IS REMOVED.
- void increase_ (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
-
-
- void insert(int n)
- {
- indices.growTo(n+1, -1);
- assert(!inHeap(n));
-
- indices[n] = heap.size();
- heap.push(n);
- percolateUp(indices[n]);
- }
-
-
- int removeMin()
- {
- int x = heap[0];
- heap[0] = heap.last();
- indices[heap[0]] = 0;
- indices[x] = -1;
- heap.pop();
- if (heap.size() > 1) percolateDown(0);
- return x;
- }
-
-
- void clear(bool dealloc = false)
- {
- for (int i = 0; i < heap.size(); i++)
- indices[heap[i]] = -1;
-#ifdef NDEBUG
- for (int i = 0; i < indices.size(); i++)
- assert(indices[i] == -1);
-#endif
- heap.clear(dealloc);
- }
-
-
- // Fool proof variant of insert/decrease/increase
- void update (int n)
- {
- if (!inHeap(n))
- insert(n);
- else {
- percolateUp(indices[n]);
- percolateDown(indices[n]);
- }
- }
-
-
- // Delete elements from the heap using a given filter function (-object).
- // *** this could probaly be replaced with a more general "buildHeap(vec<int>&)" method ***
- template <class F>
- void filter(const F& filt) {
- int i,j;
- for (i = j = 0; i < heap.size(); i++)
- if (filt(heap[i])){
- heap[j] = heap[i];
- indices[heap[i]] = j++;
- }else
- indices[heap[i]] = -1;
-
- heap.shrink(i - j);
- for (int i = heap.size() / 2 - 1; i >= 0; i--)
- percolateDown(i);
-
- assert(heapProperty());
- }
-
-
- // DEBUG: consistency checking
- bool heapProperty() const {
- return heapProperty(1); }
-
-
- // COMPAT: should be removed
- void setBounds (int n) { }
- void increase (int n) { decrease(n); }
- int getmin () { return removeMin(); }
-
-};
-
-};
-
-//=================================================================================================
-#endif
+++ /dev/null
-/*******************************************************************************************[Map.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Map_h
-#define Map_h
-
-#include <stdint.h>
-#include "Vec.h"
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// Default hash/equals functions
-//
-
-template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
-template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
-
-template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
-template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
-
-//=================================================================================================
-// Some primes
-//
-
-static const int nprimes = 25;
-static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
-
-//=================================================================================================
-// Hash table implementation of Maps
-//
-
-template<class K, class D, class H = Hash<K>, class E = Equal<K> >
-class Map {
- struct Pair { K key; D data; };
-
- H hash;
- E equals;
-
- vec<Pair>* table;
- int cap;
- int size;
-
- // Don't allow copying (error prone):
- Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); }
- Map (Map<K,D,H,E>& other) { assert(0); }
-
- int32_t index (const K& k) const { return hash(k) % cap; }
- void _insert (const K& k, const D& d) { table[index(k)].push(); table[index(k)].last().key = k; table[index(k)].last().data = d; }
- void rehash () {
- const vec<Pair>* old = table;
-
- int newsize = primes[0];
- for (int i = 1; newsize <= cap && i < nprimes; i++)
- newsize = primes[i];
-
- table = new vec<Pair>[newsize];
-
- for (int i = 0; i < cap; i++){
- for (int j = 0; j < old[i].size(); j++){
- _insert(old[i][j].key, old[i][j].data); }}
-
- delete [] old;
-
- cap = newsize;
- }
-
-
- public:
-
- Map () : table(NULL), cap(0), size(0) {}
- Map (const H& h, const E& e) : Map(), hash(h), equals(e) {}
- ~Map () { delete [] table; }
-
- void insert (const K& k, const D& d) { if (size+1 > cap / 2) rehash(); _insert(k, d); size++; }
- bool peek (const K& k, D& d) {
- if (size == 0) return false;
- const vec<Pair>& ps = table[index(k)];
- for (int i = 0; i < ps.size(); i++)
- if (equals(ps[i].key, k)){
- d = ps[i].data;
- return true; }
- return false;
- }
-
- void remove (const K& k) {
- assert(table != NULL);
- vec<Pair>& ps = table[index(k)];
- int j = 0;
- for (; j < ps.size() && !equals(ps[j].key, k); j++);
- assert(j < ps.size());
- ps[j] = ps.last();
- ps.pop();
- }
-
- void clear () {
- cap = size = 0;
- delete [] table;
- table = NULL;
- }
-};
-
-};
-
-#endif
+++ /dev/null
-/*****************************************************************************************[Queue.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Queue_h
-#define Queue_h
-
-#include "Vec.h"
-
-namespace MINISAT
-{
-
-//=================================================================================================
-
-
-template <class T>
-class Queue {
- vec<T> elems;
- int first;
-
-public:
- Queue(void) : first(0) { }
-
- void insert(T x) { elems.push(x); }
- T peek () const { return elems[first]; }
- void pop () { first++; }
-
- void clear(bool dealloc = false) { elems.clear(dealloc); first = 0; }
- int size(void) { return elems.size() - first; }
-
- //bool has(T x) { for (int i = first; i < elems.size(); i++) if (elems[i] == x) return true; return false; }
-
- const T& operator [] (int index) const { return elems[first + index]; }
-
-};
-
-//template<class T>
-//class Queue {
-// vec<T> buf;
-// int first;
-// int end;
-//
-//public:
-// typedef T Key;
-//
-// Queue() : buf(1), first(0), end(0) {}
-//
-// void clear () { buf.shrinkTo(1); first = end = 0; }
-// int size () { return (end >= first) ? end - first : end - first + buf.size(); }
-//
-// T peek () { assert(first != end); return buf[first]; }
-// void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
-// void insert(T elem) { // INVARIANT: buf[end] is always unused
-// buf[end++] = elem;
-// if (end == buf.size()) end = 0;
-// if (first == end){ // Resize:
-// vec<T> tmp((buf.size()*3 + 1) >> 1);
-// //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
-// int i = 0;
-// for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
-// for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
-// first = 0;
-// end = buf.size();
-// tmp.moveTo(buf);
-// }
-// }
-//};
-
-};
-
-//=================================================================================================
-#endif
+++ /dev/null
-/******************************************************************************************[Sort.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Sort_h
-#define Sort_h
-#include "Vec.h"
-
-namespace MINISAT
-{
-//=================================================================================================
-// Some sorting algorithms for vec's
-
-
-template<class T>
-struct LessThan_default {
- bool operator () (T x, T y) { return x < y; }
-};
-
-
-template <class T, class LessThan>
-void selectionSort(T* array, int size, LessThan lt)
-{
- int i, j, best_i;
- T tmp;
-
- for (i = 0; i < size-1; i++){
- best_i = i;
- for (j = i+1; j < size; j++){
- if (lt(array[j], array[best_i]))
- best_i = j;
- }
- tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
- }
-}
-template <class T> static inline void selectionSort(T* array, int size) {
- selectionSort(array, size, LessThan_default<T>()); }
-
-template <class T, class LessThan>
-void sort(T* array, int size, LessThan lt)
-{
- if (size <= 15)
- selectionSort(array, size, lt);
-
- else{
- T pivot = array[size / 2];
- T tmp;
- int i = -1;
- int j = size;
-
- for(;;){
- do i++; while(lt(array[i], pivot));
- do j--; while(lt(pivot, array[j]));
-
- if (i >= j) break;
-
- tmp = array[i]; array[i] = array[j]; array[j] = tmp;
- }
-
- sort(array , i , lt);
- sort(&array[i], size-i, lt);
- }
-}
-template <class T> static inline void sort(T* array, int size) {
- sort(array, size, LessThan_default<T>()); }
-
-
-//=================================================================================================
-// For 'vec's:
-
-
-template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
- sort(v.getData(), v.size(), lt); }
-template <class T> void sort(vec<T>& v) {
- sort(v, LessThan_default<T>()); }
-
-};
-//=================================================================================================
-#endif
+++ /dev/null
-/*******************************************************************************************[Vec.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Vec_h
-#define Vec_h
-#include <cstdlib>
-#include <cassert>
-#include <new>
-
-namespace MINISAT
-{
-//=================================================================================================
-// Automatically resizable arrays
-//
-// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
-
-template<class T>
-class vec {
- T* data;
- int sz;
- int cap;
-
- void init(int size, const T& pad);
- void grow(int min_cap);
-
- // Don't allow copying (error prone):
- vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
- vec (vec<T>& other) { assert(0); }
-
- static inline int imin(int x, int y) {
- int mask = (x-y) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- static inline int imax(int x, int y) {
- int mask = (y-x) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
-public:
- // Types:
- typedef int Key;
- typedef T Datum;
-
- // Constructors:
- vec(void) : data(NULL) , sz(0) , cap(0) { }
- vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
- vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
- vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
- ~vec(void) { clear(true); }
-
- // Ownership of underlying array:
- T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
- const T* getData() const {return data; }
- T* getData() {return data; }
-
- // Size operations:
- int size (void) const { return sz; }
- void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
- void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
- void pop (void) { sz--, data[sz].~T(); }
- void growTo (int size);
- void growTo (int size, const T& pad);
- void clear (bool dealloc = false);
- void capacity (int size) { grow(size); }
-
- // Stack interface:
-#if 1
- void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
- //void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
- void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
- void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
-#else
- void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
- void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
-#endif
-
- const T& last (void) const { return data[sz-1]; }
- T& last (void) { return data[sz-1]; }
-
- // Vector interface:
- const T& operator [] (int index) const { return data[index]; }
- T& operator [] (int index) { return data[index]; }
-
-
- // Duplicatation (preferred instead):
- void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (©[i]) T(data[i]); }
- void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
-};
-
-template<class T>
-void vec<T>::grow(int min_cap) {
- if (min_cap <= cap) return;
- if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
- else do cap = (cap*3+1) >> 1; while (cap < min_cap);
- data = (T*)realloc(data, cap * sizeof(T)); }
-
-template<class T>
-void vec<T>::growTo(int size, const T& pad) {
- if (sz >= size) return;
- grow(size);
- for (int i = sz; i < size; i++) new (&data[i]) T(pad);
- sz = size; }
-
-template<class T>
-void vec<T>::growTo(int size) {
- if (sz >= size) return;
- grow(size);
- for (int i = sz; i < size; i++) new (&data[i]) T();
- sz = size; }
-
-template<class T>
-void vec<T>::clear(bool dealloc) {
- if (data != NULL){
- for (int i = 0; i < sz; i++) data[i].~T();
- sz = 0;
- if (dealloc) free(data), data = NULL, cap = 0; } }
-
-};
-
-#endif
#ifndef SAT_H_
#define SAT_H_
-#ifdef CRYPTOMINISAT
-#include "cryptominisat/Solver.h"
-#include "cryptominisat/SolverTypes.h"
-#endif
-
#ifdef CRYPTOMINISAT2
#include "cryptominisat2/Solver.h"
#include "cryptominisat2/SolverTypes.h"
x = info[varphi];
}
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
if(isXorChild)
{
setDoRenamePos(*x);
convertFormulaToCNFPosCases(varphi, defs);
}
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
if ((x->clausespos != NULL
&& (x->clausespos->size() > 1
|| (renameAllSiblings
void CNFMgr::convertFormulaToCNFPosXOR(const ASTNode& varphi,
ClauseList* defs)
{
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
ASTVec::const_iterator it = varphi.GetChildren().begin();
ClausePtr xor_clause = new vector<const ASTNode*>();
ClauseList* defs)
{
//#ifdef FALSE
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
CNFInfo * xx = info[varphi];
if(NULL != xx
&& sharesPos(*xx) > 0
// {
// continue;
// }
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
if(add_xor_clauses)
{
newSolver.addXorClause(satSolverClause, false);
return sat;
}
-#if defined CRYPTOMINISAT || defined CRYPTOMINISAT2
+#if defined CRYPTOMINISAT2
if(!xorcl->empty())
{
sat = toSATandSolve(SatSolver, *xorcl, true);