+++ /dev/null
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a
-copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be included
-in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
-OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+++ /dev/null
-.PHONY: core
-core:
- $(MAKE) -C core lib all
- mv Solver.or Solver.o
-
-.PHONY: simp
-simp:
- $(MAKE) -C simp lib all
- mv SimpSolver.or SimpSolver.o
-
-.PHONY: unsound
-unsound:
- $(MAKE) -C unsound lib all
- mv UnsoundSimpSolver.or UnsoundSimpSolver.o
-
-.PHONY: cryptominisat
-cryptominisat:
- $(MAKE) -C cryptominisat lib all
-
-.PHONY: clean
-clean:
- rm -rf *.o *~ libminisat.a
- $(MAKE) -C core clean
- $(MAKE) -C simp clean
- $(MAKE) -C unsound clean
- $(MAKE) -C cryptominisat clean
-
+++ /dev/null
-Directory overview:
-==================
-
-mtl/ Mini Template Library
-core/ A core version of the solver
-simp/ An extended solver with simplification capabilities
-README
-LICENSE
-
-To build (release version: without assertions, statically linked, etc):
-======================================================================
-
-cd { core | simp }
-gmake rs
-
-Usage:
-======
-
-TODO
+++ /dev/null
-include ../../../scripts/Makefile.common
-MTL = ../mtl
-CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
-EXEC = minisat
-CFLAGS += -I$(MTL) -Wall -DEXT_HASH_MAP -ffloat-store $(CFLAGS_M32)
-LFLAGS = -lz
-
-include ../mtl/template.mk
-all: libminisat.a
- ranlib libminisat.a
- cp *.or ../
- cp libminisat.a ../
+++ /dev/null
-/****************************************************************************************[Solver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "Solver.h"
-#include "Sort.h"
-#include <cmath>
-
-namespace MINISAT {
-
-//=================================================================================================
-// Constructor/Destructor:
-
-
-Solver::Solver() :
-
- // Parameters: (formerly in 'SearchParams')
- var_decay(1 / 0.75), clause_decay(1 / 0.999), random_var_freq(0.02)
- , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
-
- // More parameters:
- //
- , expensive_ccmin (true)
- , polarity_mode (polarity_false)
- , verbosity (0)
-
- // Statistics: (formerly in 'SolverStats')
- //
- , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
- , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
- , ok (true)
- , cla_inc (1)
- , var_inc (1)
- , qhead (0)
- , simpDB_assigns (-1)
- , simpDB_props (0)
- , order_heap (VarOrderLt(activity))
- , random_seed (91648253)
- , progress_estimate(0)
- , remove_satisfied (true)
-{}
-
-
-Solver::~Solver()
-{
- for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
- for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
-}
-
-
-//=================================================================================================
-// Minor methods:
-
-
-// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
-// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
-//
-Var Solver::newVar(bool sign, bool dvar)
-{
- int v = nVars();
- watches .push(); // (list for positive literal)
- watches .push(); // (list for negative literal)
- reason .push(NULL);
- assigns .push(toInt(l_Undef));
- level .push(-1);
- activity .push(0);
- seen .push(0);
-
- polarity .push((char)sign);
- decision_var.push((char)dvar);
-
- insertVarOrder(v);
- return v;
-}
-
-
-bool Solver::addClause(vec<Lit>& ps)
-{
- assert(decisionLevel() == 0);
-
- if (!ok)
- return false;
- else{
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p; int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++)
- if (value(ps[i]) == l_True || ps[i] == ~p)
- return true;
- else if (value(ps[i]) != l_False && ps[i] != p)
- ps[j++] = p = ps[i];
- ps.shrink(i - j);
- }
-
- if (ps.size() == 0)
- return ok = false;
- else if (ps.size() == 1){
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue(ps[0]);
- return ok = (propagate() == NULL);
- }else{
- Clause* c = Clause_new(ps, false);
- clauses.push(c);
- attachClause(*c);
- }
-
- return true;
-}
-
-
-void Solver::attachClause(Clause& c) {
- assert(c.size() > 1);
- watches[toInt(~c[0])].push(&c);
- watches[toInt(~c[1])].push(&c);
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size(); }
-
-
-void Solver::detachClause(Clause& c) {
- assert(c.size() > 1);
- assert(find(watches[toInt(~c[0])], &c));
- assert(find(watches[toInt(~c[1])], &c));
- remove(watches[toInt(~c[0])], &c);
- remove(watches[toInt(~c[1])], &c);
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size(); }
-
-
-void Solver::removeClause(Clause& c) {
- detachClause(c);
- free(&c); }
-
-
-bool Solver::satisfied(const Clause& c) const {
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True)
- return true;
- return false; }
-
-
-// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
-//
-void Solver::cancelUntil(int level) {
- if (decisionLevel() > level){
- for (int c = trail.size()-1; c >= trail_lim[level]; c--){
- Var x = var(trail[c]);
- assigns[x] = toInt(l_Undef);
- insertVarOrder(x); }
- qhead = trail_lim[level];
- trail.shrink(trail.size() - trail_lim[level]);
- trail_lim.shrink(trail_lim.size() - level);
- } }
-
-
-//=================================================================================================
-// Major methods:
-
-
-Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq)
-{
- Var next = var_Undef;
-
- // Random decision:
- if (drand(random_seed) < random_var_freq && !order_heap.empty()){
- next = order_heap[irand(random_seed,order_heap.size())];
- if (toLbool(assigns[next]) == l_Undef && decision_var[next])
- rnd_decisions++; }
-
- // Activity based decision:
- while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next])
- if (order_heap.empty()){
- next = var_Undef;
- break;
- }else
- next = order_heap.removeMin();
-
- bool sign = false;
- switch (polarity_mode){
- case polarity_true: sign = false; break;
- case polarity_false: sign = true; break;
- case polarity_user: sign = polarity[next]; break;
- case polarity_rnd: sign = irand(random_seed, 2); break;
- default: assert(false); }
-
- return next == var_Undef ? lit_Undef : Lit(next, sign);
-}
-
-/*_________________________________________________________________________________________________
-|
-| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
-|
-| Description:
-| Analyze conflict and produce a reason clause.
-|
-| Pre-conditions:
-| * 'out_learnt' is assumed to be cleared.
-| * Current decision level must be greater than root level.
-|
-| Post-conditions:
-| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
-|
-| Effect:
-| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
-|________________________________________________________________________________________________@*/
-void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
-{
- int pathC = 0;
- Lit p = lit_Undef;
-
- // Generate conflict clause:
- //
- out_learnt.push(); // (leave room for the asserting literal)
- int index = trail.size() - 1;
- out_btlevel = 0;
-
- do{
- assert(confl != NULL); // (otherwise should be UIP)
- Clause& c = *confl;
-
- if (c.learnt())
- claBumpActivity(c);
-
- for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){
- Lit q = c[j];
-
- if (!seen[var(q)] && level[var(q)] > 0){
- varBumpActivity(var(q));
- seen[var(q)] = 1;
- if (level[var(q)] >= decisionLevel())
- pathC++;
- else{
- out_learnt.push(q);
- if (level[var(q)] > out_btlevel)
- out_btlevel = level[var(q)];
- }
- }
- }
-
- // Select next clause to look at:
- while (!seen[var(trail[index--])]);
- p = trail[index+1];
- confl = reason[var(p)];
- seen[var(p)] = 0;
- pathC--;
-
- }while (pathC > 0);
- out_learnt[0] = ~p;
-
- // Simplify conflict clause:
- //
- int i, j;
- if (expensive_ccmin){
- uint32_t abstract_level = 0;
- for (i = 1; i < out_learnt.size(); i++)
- abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict)
-
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++)
- if (reason[var(out_learnt[i])] == NULL || !litRedundant(out_learnt[i], abstract_level))
- out_learnt[j++] = out_learnt[i];
- }else{
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++){
- Clause& c = *reason[var(out_learnt[i])];
- for (int k = 1; k < c.size(); k++)
- if (!seen[var(c[k])] && level[var(c[k])] > 0){
- out_learnt[j++] = out_learnt[i];
- break; }
- }
- }
- max_literals += out_learnt.size();
- out_learnt.shrink(i - j);
- tot_literals += out_learnt.size();
-
- // Find correct backtrack level:
- //
- if (out_learnt.size() == 1)
- out_btlevel = 0;
- else{
- int max_i = 1;
- for (int i = 2; i < out_learnt.size(); i++)
- if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])])
- max_i = i;
- Lit p = out_learnt[max_i];
- out_learnt[max_i] = out_learnt[1];
- out_learnt[1] = p;
- out_btlevel = level[var(p)];
- }
-
-
- for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared)
-}
-
-
-// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
-// visiting literals at levels that cannot be removed later.
-bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
-{
- analyze_stack.clear(); analyze_stack.push(p);
- int top = analyze_toclear.size();
- while (analyze_stack.size() > 0){
- assert(reason[var(analyze_stack.last())] != NULL);
- Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop();
-
- for (int i = 1; i < c.size(); i++){
- Lit p = c[i];
- if (!seen[var(p)] && level[var(p)] > 0){
- if (reason[var(p)] != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){
- seen[var(p)] = 1;
- analyze_stack.push(p);
- analyze_toclear.push(p);
- }else{
- for (int j = top; j < analyze_toclear.size(); j++)
- seen[var(analyze_toclear[j])] = 0;
- analyze_toclear.shrink(analyze_toclear.size() - top);
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyzeFinal : (p : Lit) -> [void]
-|
-| Description:
-| Specialized analysis procedure to express the final conflict in terms of assumptions.
-| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
-| stores the result in 'out_conflict'.
-|________________________________________________________________________________________________@*/
-void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
-{
- out_conflict.clear();
- out_conflict.push(p);
-
- if (decisionLevel() == 0)
- return;
-
- seen[var(p)] = 1;
-
- for (int i = trail.size()-1; i >= trail_lim[0]; i--){
- Var x = var(trail[i]);
- if (seen[x]){
- if (reason[x] == NULL){
- assert(level[x] > 0);
- out_conflict.push(~trail[i]);
- }else{
- Clause& c = *reason[x];
- for (int j = 1; j < c.size(); j++)
- if (level[var(c[j])] > 0)
- seen[var(c[j])] = 1;
- }
- seen[x] = 0;
- }
- }
-
- seen[var(p)] = 0;
-}
-
-
-void Solver::uncheckedEnqueue(Lit p, Clause* from)
-{
- assert(value(p) == l_Undef);
- assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost effecient
- level [var(p)] = decisionLevel();
- reason [var(p)] = from;
- trail.push(p);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| propagate : [void] -> [Clause*]
-|
-| Description:
-| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
-| otherwise NULL.
-|
-| Post-conditions:
-| * the propagation queue is empty, even if there was a conflict.
-|________________________________________________________________________________________________@*/
-Clause* Solver::propagate()
-{
- Clause* confl = NULL;
- int num_props = 0;
-
- while (qhead < trail.size()){
- Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
- vec<Clause*>& ws = watches[toInt(p)];
- Clause **i, **j, **end;
- num_props++;
-
- for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){
- Clause& c = **i++;
-
- // Make sure the false literal is data[1]:
- Lit false_lit = ~p;
- if (c[0] == false_lit)
- c[0] = c[1], c[1] = false_lit;
-
- assert(c[1] == false_lit);
-
- // If 0th watch is true, then clause is already satisfied.
- Lit first = c[0];
- if (value(first) == l_True){
- *j++ = &c;
- }else{
- // Look for new watch:
- for (int k = 2; k < c.size(); k++)
- if (value(c[k]) != l_False){
- c[1] = c[k]; c[k] = false_lit;
- watches[toInt(~c[1])].push(&c);
- goto FoundWatch; }
-
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
- if (value(first) == l_False){
- confl = &c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- }else
- uncheckedEnqueue(first, &c);
- }
- FoundWatch:;
- }
- ws.shrink(i - j);
- }
- propagations += num_props;
- simpDB_props -= num_props;
-
- return confl;
-}
-
-/*_________________________________________________________________________________________________
-|
-| reduceDB : () -> [void]
-|
-| Description:
-| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
-| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
-|________________________________________________________________________________________________@*/
-struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } };
-void Solver::reduceDB()
-{
- int i, j;
- double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
-
- sort(learnts, reduceDB_lt());
- for (i = j = 0; i < learnts.size() / 2; i++){
- if (learnts[i]->size() > 2 && !locked(*learnts[i]))
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- for (; i < learnts.size(); i++){
- if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- learnts.shrink(i - j);
-}
-
-
-void Solver::removeSatisfied(vec<Clause*>& cs)
-{
- int i,j;
- for (i = j = 0; i < cs.size(); i++){
- if (satisfied(*cs[i]))
- removeClause(*cs[i]);
- else
- cs[j++] = cs[i];
- }
- cs.shrink(i - j);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| simplify : [void] -> [bool]
-|
-| Description:
-| Simplify the clause database according to the current top-level assigment. Currently, the only
-| thing done here is the removal of satisfied clauses, but more things can be put here.
-|________________________________________________________________________________________________@*/
-bool Solver::simplify()
-{
- assert(decisionLevel() == 0);
-
- if (!ok || propagate() != NULL)
- return ok = false;
-
- if (nAssigns() == simpDB_assigns || (simpDB_props > 0))
- return true;
-
- // Remove satisfied clauses:
- removeSatisfied(learnts);
- if (remove_satisfied) // Can be turned off.
- removeSatisfied(clauses);
-
- // Remove fixed variables from the variable heap:
- order_heap.filter(VarFilter(*this));
-
- simpDB_assigns = nAssigns();
- simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
-|
-| Description:
-| Search for a model the specified number of conflicts, keeping the number of learnt clauses
-| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
-| indicate infinity.
-|
-| Output:
-| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
-| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
-| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
-|________________________________________________________________________________________________@*/
-lbool Solver::search(int nof_conflicts, int nof_learnts)
-{
- assert(ok);
- int backtrack_level;
- int conflictC = 0;
- vec<Lit> learnt_clause;
-
- starts++;
-
- bool first = true;
-
- for (;;){
- Clause* confl = propagate();
- if (confl != NULL){
- // CONFLICT
- conflicts++; conflictC++;
- if (decisionLevel() == 0) return l_False;
-
- first = false;
-
- learnt_clause.clear();
- analyze(confl, learnt_clause, backtrack_level);
- cancelUntil(backtrack_level);
- assert(value(learnt_clause[0]) == l_Undef);
-
- if (learnt_clause.size() == 1){
- uncheckedEnqueue(learnt_clause[0]);
- }else{
- Clause* c = Clause_new(learnt_clause, true);
- learnts.push(c);
- attachClause(*c);
- claBumpActivity(*c);
- uncheckedEnqueue(learnt_clause[0], c);
- }
-
- varDecayActivity();
- claDecayActivity();
-
- }else{
- // NO CONFLICT
-
- if (nof_conflicts >= 0 && conflictC >= nof_conflicts){
- // Reached bound on number of conflicts:
- progress_estimate = progressEstimate();
- cancelUntil(0);
- return l_Undef; }
-
- // Simplify the set of problem clauses:
- if (decisionLevel() == 0 && !simplify())
- return l_False;
-
- if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
- // Reduce the set of learnt clauses:
- reduceDB();
-
- Lit next = lit_Undef;
- while (decisionLevel() < assumptions.size()){
- // Perform user provided assumption:
- Lit p = assumptions[decisionLevel()];
- if (value(p) == l_True){
- // Dummy decision level:
- newDecisionLevel();
- }else if (value(p) == l_False){
- analyzeFinal(~p, conflict);
- return l_False;
- }else{
- next = p;
- break;
- }
- }
-
- if (next == lit_Undef){
- // New variable decision:
- decisions++;
- next = pickBranchLit(polarity_mode, random_var_freq);
-
- if (next == lit_Undef){
-
- // Model found:
- return l_True;
- }
-
- }
-
- // Increase decision level and enqueue 'next'
- assert(value(next) == l_Undef);
- newDecisionLevel();
- uncheckedEnqueue(next);
- }
- }
-}
-
-
-double Solver::progressEstimate() const
-{
- double progress = 0;
- double F = 1.0 / nVars();
-
- for (int i = 0; i <= decisionLevel(); i++){
- int beg = i == 0 ? 0 : trail_lim[i - 1];
- int end = i == decisionLevel() ? trail.size() : trail_lim[i];
- progress += pow(F, i) * (end - beg);
- }
-
- return progress / nVars();
-}
-
-
-bool Solver::solve(const vec<Lit>& assumps)
-{
- model.clear();
- conflict.clear();
-
- if (!ok) return false;
-
- assumps.copyTo(assumptions);
-
- double nof_conflicts = restart_first;
- double nof_learnts = nClauses() * learntsize_factor;
- lbool status = l_Undef;
-
- if (verbosity >= 1){
- reportf("============================[ Search Statistics ]==============================\n");
- reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
- reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
- reportf("===============================================================================\n");
- }
-
- // Search:
- while (status == l_Undef){
- if (verbosity >= 1)
- reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
- status = search((int)nof_conflicts, (int)nof_learnts);
- nof_conflicts *= restart_inc;
- nof_learnts *= learntsize_inc;
- }
-
- if (verbosity >= 1)
- reportf("===============================================================================\n");
-
-
- if (status == l_True){
- // Extend & copy model:
- model.growTo(nVars());
- for (int i = 0; i < nVars(); i++) model[i] = value(i);
-#ifndef NDEBUG
- verifyModel();
-#endif
- }else{
- assert(status == l_False);
- if (conflict.size() == 0)
- ok = false;
- }
-
- cancelUntil(0);
- return status == l_True;
-}
-
-
-//=================================================================================================
-// Debug methods:
-
-
-void Solver::verifyModel()
-{
- bool failed = false;
- for (int i = 0; i < clauses.size(); i++){
- assert(clauses[i]->mark() == 0);
- Clause& c = *clauses[i];
- for (int j = 0; j < c.size(); j++)
- if (modelValue(c[j]) == l_True)
- goto next;
-
- reportf("unsatisfied clause: ");
- printClause(*clauses[i]);
- reportf("\n");
- failed = true;
- next:;
- }
-
- assert(!failed);
-
- reportf("Verified %d original clauses.\n", clauses.size());
-}
-
-
-void Solver::checkLiteralCount()
-{
- // Check that sizes are calculated correctly:
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 0)
- cnt += clauses[i]->size();
-
- if ((int)clauses_literals != cnt){
- fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
- assert((int)clauses_literals == cnt);
- }
-}
-
-};
+++ /dev/null
-/****************************************************************************************[Solver.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Solver_h
-#define Solver_h
-
-#include <cstdio>
-
-#include "../mtl/Map.h"
-#include "../mtl/Vec.h"
-#include "../mtl/Heap.h"
-#include "../mtl/Alg.h"
-
-#include "SolverTypes.h"
-
-#ifdef _MSC_VER
- #include <ctime>
-#else
- #include <sys/time.h>
- #include <sys/resource.h>
- #include <unistd.h>
-#endif
-
-namespace MINISAT {
-
-/*************************************************************************************/
-#ifdef _MSC_VER
-
-static inline double cpuTime(void) {
- return (double)clock() / CLOCKS_PER_SEC; }
-#else
-
-static inline double cpuTime(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; }
-#endif
-
-
-#if defined(__linux__)
-static inline int memReadStat(int field)
-{
- char name[256];
- pid_t pid = getpid();
- sprintf(name, "/proc/%d/statm", pid);
- FILE* in = fopen(name, "rb");
- if (in == NULL) return 0;
- int value;
- for (; field >= 0; field--)
- fscanf(in, "%d", &value);
- fclose(in);
- return value;
-}
-static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); }
-
-
-#elif defined(__FreeBSD__)
-static inline uint64_t memUsed(void) {
- struct rusage ru;
- getrusage(RUSAGE_SELF, &ru);
- return ru.ru_maxrss*1024; }
-
-
-#else
-static inline uint64_t memUsed() { return 0; }
-#endif
-
-#if defined(__linux__)
-#include <fpu_control.h>
-#endif
-
-//=================================================================================================
-// Solver -- the main class:
-
-
-class Solver {
- friend class DPLLMgr;
-public:
-
- // Constructor/Destructor:
- //
- Solver();
- ~Solver();
-
- // Problem specification:
- //
- Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
- bool addClause (vec<Lit>& ps); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
-
-
- // Solving:
- //
- bool simplify (); // Removes already satisfied clauses.
- bool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
- bool solve (); // Search without assumptions.
- bool okay () const; // FALSE means solver is in a conflicting state
-
- // Variable mode:
- //
- void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
- void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
-
- // Read state:
- //
- lbool value (Var x) const; // The current value of a variable.
- lbool value (Lit p) const; // The current value of a literal.
- lbool modelValue (Lit p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
- int nAssigns () const; // The current number of assigned literals.
- int nClauses () const; // The current number of original clauses.
- int nLearnts () const; // The current number of learnt clauses.
- int nVars () const; // The current number of variables.
-
- // Extra results: (read-only member variable)
- //
- vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
- vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
- // this vector represent the final conflict clause expressed in the assumptions.
-
- // Mode of operation:
- //
- double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
- double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
- double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
- int restart_first; // The initial restart limit. (default 100)
- double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
- double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
- double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
- bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
- int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
- int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
-
- enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
-
- // Statistics: (read-only member variable)
- //
- uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
- uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
-
-protected:
-
- // Helper structures:
- //
- struct VarOrderLt {
- const vec<double>& activity;
- bool operator () (Var x, Var y) const { return activity[x] > activity[y]; }
- VarOrderLt(const vec<double>& act) : activity(act) { }
- };
-
- friend class VarFilter;
- struct VarFilter {
- const Solver& s;
- VarFilter(const Solver& _s) : s(_s) {}
- bool operator()(Var v) const { return toLbool(s.assigns[v]) == l_Undef && s.decision_var[v]; }
- };
-
- // Solver state:
- //
- bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
- vec<Clause*> clauses; // List of problem clauses.
- vec<Clause*> learnts; // List of learnt clauses.
- double cla_inc; // Amount to bump next clause with.
- vec<double> activity; // A heuristic measurement of the activity of a variable.
- double var_inc; // Amount to bump next variable with.
- vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
- vec<char> assigns; // The current assignments (lbool:s stored as char:s).
- vec<char> polarity; // The preferred polarity of each variable.
- vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
- vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
- vec<int> trail_lim; // Separator indices for different decision levels in 'trail'.
- vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
- vec<int> level; // 'level[var]' contains the level at which the assignment was made.
- int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
- int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
- int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
- vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
- Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
- double random_seed; // Used by the random variable selection.
- double progress_estimate;// Set by 'search()'.
- bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
-
-
- // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
- // used, exept 'seen' wich is used in several places.
- //
- vec<char> seen;
- vec<Lit> analyze_stack;
- vec<Lit> analyze_toclear;
- vec<Lit> add_tmp;
-
- // Main internal methods:
- //
- void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
- Lit pickBranchLit (int polarity_mode, double random_var_freq); // Return the next decision variable.
- void newDecisionLevel (); // Begins a new decision level.
- void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
- bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
- Clause* propagate (); // Perform unit propagation. Returns possibly conflicting clause.
- void cancelUntil (int level); // Backtrack until a certain level.
- void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
- void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
- bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
- lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
- void reduceDB (); // Reduce the set of learnt clauses.
- void removeSatisfied (vec<Clause*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
-
- // Maintaining Variable/Clause activity:
- //
- void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
- void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
- void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
- void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
-
- // Operations on clauses:
- //
- void attachClause (Clause& c); // Attach a clause to watcher lists.
- void detachClause (Clause& c); // Detach a clause to watcher lists.
- void removeClause (Clause& c); // Detach and free a clause.
- bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
- bool satisfied (const Clause& c) const; // Returns TRUE if a clause is satisfied in the current state.
-
- // Misc:
- //
- int decisionLevel () const; // Gives the current decisionlevel.
- uint32_t abstractLevel (Var x) const; // Used to represent an abstraction of sets of decision levels.
- double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
-
- // Debug:
- void printLit (Lit l);
- template<class C>
- void printClause (const C& c);
- void verifyModel ();
- void checkLiteralCount();
-
- // Static helpers:
- //
-
- // Returns a random float 0 <= x < 1. Seed must never be 0.
- static inline double drand(double& seed) {
- seed *= 1389796;
- int q = (int)(seed / 2147483647);
- seed -= (double)q * 2147483647;
- return seed / 2147483647; }
-
- // Returns a random integer 0 <= x < size. Seed must never be 0.
- static inline int irand(double& seed, int size) {
- return (int)(drand(seed) * size); }
-};
-
-
-//=================================================================================================
-// Implementation of inline methods:
-
-inline void Solver::insertVarOrder(Var x) {
- if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x); }
-
-inline void Solver::varDecayActivity() { var_inc *= var_decay; }
-inline void Solver::varBumpActivity(Var v) {
- if ( (activity[v] += var_inc) > 1e100 ) {
- // Rescale:
- for (int i = 0; i < nVars(); i++)
- activity[i] *= 1e-100;
- var_inc *= 1e-100; }
-
- // Update order_heap with respect to new activity:
- if (order_heap.inHeap(v))
- order_heap.decrease(v); }
-
-inline void Solver::claDecayActivity() { cla_inc *= clause_decay; }
-inline void Solver::claBumpActivity (Clause& c) {
- if ( (c.activity() += cla_inc) > 1e20 ) {
- // Rescale:
- for (int i = 0; i < learnts.size(); i++)
- learnts[i]->activity() *= 1e-20;
- cla_inc *= 1e-20; } }
-
-inline bool Solver::enqueue (Lit p, Clause* from) { return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true); }
-inline bool Solver::locked (const Clause& c) const { return reason[var(c[0])] == &c && value(c[0]) == l_True; }
-inline void Solver::newDecisionLevel() { trail_lim.push(trail.size()); }
-
-inline int Solver::decisionLevel () const { return trail_lim.size(); }
-inline uint32_t Solver::abstractLevel (Var x) const { return 1 << (level[x] & 31); }
-inline lbool Solver::value (Var x) const { return toLbool(assigns[x]); }
-inline lbool Solver::value (Lit p) const { return toLbool(assigns[var(p)]) ^ sign(p); }
-inline lbool Solver::modelValue (Lit p) const { return model[var(p)] ^ sign(p); }
-inline int Solver::nAssigns () const { return trail.size(); }
-inline int Solver::nClauses () const { return clauses.size(); }
-inline int Solver::nLearnts () const { return learnts.size(); }
-inline int Solver::nVars () const { return assigns.size(); }
-inline void Solver::setPolarity (Var v, bool b) { polarity [v] = (char)b; }
-inline void Solver::setDecisionVar(Var v, bool b) { decision_var[v] = (char)b; if (b) { insertVarOrder(v); } }
-inline bool Solver::solve () { vec<Lit> tmp; return solve(tmp); }
-inline bool Solver::okay () const { return ok; }
-
-
-
-//=================================================================================================
-// Debug + etc:
-
-
-#define reportf(format, args...) ( fflush(stdout), fprintf(stderr, format, ## args), fflush(stderr) )
-
-static inline void logLit(FILE* f, Lit l)
-{
- fprintf(f, "%sx%d", sign(l) ? "~" : "", var(l)+1);
-}
-
-static inline void logLits(FILE* f, const vec<Lit>& ls)
-{
- fprintf(f, "[ ");
- if (ls.size() > 0){
- logLit(f, ls[0]);
- for (int i = 1; i < ls.size(); i++){
- fprintf(f, ", ");
- logLit(f, ls[i]);
- }
- }
- fprintf(f, "] ");
-}
-
-static inline const char* showBool(bool b) { return b ? "true" : "false"; }
-
-
-// Just like 'assert()' but expression will be evaluated in the release version as well.
-static inline void check(bool expr) { assert(expr); }
-
-
-inline void Solver::printLit(Lit l)
-{
- reportf("%s%d:%c", sign(l) ? "-" : "", var(l)+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
-}
-
-
-template<class C>
-inline void Solver::printClause(const C& c)
-{
- for (int i = 0; i < c.size(); i++){
- printLit(c[i]);
- fprintf(stderr, " ");
- }
-}
-
-};
-
-#endif
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-
-#ifndef SolverTypes_h
-#define SolverTypes_h
-
-#include <cassert>
-#include <stdint.h>
-
-namespace MINISAT{
-
-//=================================================================================================
-// Variables, literals, lifted booleans, clauses:
-
-
-// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
-// so that they can be used as array indices.
-
-typedef int Var;
-#define var_Undef (-1)
-
-
-class Lit {
- int x;
- public:
- Lit() : x(2*var_Undef) { } // (lit_Undef)
- explicit Lit(Var var, bool sign = false) : x((var+var) + (int)sign) { }
-
- // Don't use these for constructing/deconstructing literals. Use the normal constructors instead.
- friend int toInt (Lit p); // Guarantees small, positive integers suitable for array indexing.
- friend Lit toLit (int i); // Inverse of 'toInt()'
- friend Lit operator ~(Lit p);
- friend bool sign (Lit p);
- friend int var (Lit p);
- friend Lit unsign (Lit p);
- friend Lit id (Lit p, bool sgn);
-
- bool operator == (Lit p) const { return x == p.x; }
- bool operator != (Lit p) const { return x != p.x; }
- bool operator < (Lit p) const { return x < p.x; } // '<' guarantees that p, ~p are adjacent in the ordering.
-};
-
-inline int toInt (Lit p) { return p.x; }
-inline Lit toLit (int i) { Lit p; p.x = i; return p; }
-inline Lit operator ~(Lit p) { Lit q; q.x = p.x ^ 1; return q; }
-inline bool sign (Lit p) { return p.x & 1; }
-inline int var (Lit p) { return p.x >> 1; }
-inline Lit unsign (Lit p) { Lit q; q.x = p.x & ~1; return q; }
-inline Lit id (Lit p, bool sgn) { Lit q; q.x = p.x ^ (int)sgn; return q; }
-
-const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
-const Lit lit_Error(var_Undef, true ); // }
-
-
-//=================================================================================================
-// Lifted booleans:
-
-
-class lbool {
- char value;
- explicit lbool(int v) : value(v) { }
-
-public:
- lbool() : value(0) { }
- lbool(bool x) : value((int)x*2-1) { }
- int toInt(void) const { return value; }
-
- bool operator == (lbool b) const { return value == b.value; }
- bool operator != (lbool b) const { return value != b.value; }
- lbool operator ^ (bool b) const { return b ? lbool(-value) : lbool(value); }
-
- friend int toInt (lbool l);
- friend lbool toLbool(int v);
-};
-inline int toInt (lbool l) { return l.toInt(); }
-inline lbool toLbool(int v) { return lbool(v); }
-
-const lbool l_True = toLbool( 1);
-const lbool l_False = toLbool(-1);
-const lbool l_Undef = toLbool( 0);
-
-//=================================================================================================
-// Clause -- a simple class for representing a clause:
-
-
-class Clause {
- uint32_t size_etc;
- union { float act; uint32_t abst; } extra;
- Lit data[0];
-
-public:
- void calcAbstraction() {
- uint32_t abstraction = 0;
- for (int i = 0; i < size(); i++)
- abstraction |= 1 << (var(data[i]) & 31);
- extra.abst = abstraction; }
-
- // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
- template<class V>
- Clause(const V& ps, bool learnt) {
- size_etc = (ps.size() << 3) | (uint32_t)learnt;
- for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
- if (learnt) extra.act = 0; else calcAbstraction(); }
-
- // -- use this function instead:
- template<class V>
- friend Clause* Clause_new(const V& ps, bool learnt = false) {
- assert(sizeof(Lit) == sizeof(uint32_t));
- assert(sizeof(float) == sizeof(uint32_t));
- void* mem = malloc(sizeof(Clause) + sizeof(uint32_t)*(ps.size()));
- return new (mem) Clause(ps, learnt); }
-
- int size () const { return size_etc >> 3; }
- void shrink (int i) { assert(i <= size()); size_etc = (((size_etc >> 3) - i) << 3) | (size_etc & 7); }
- void pop () { shrink(1); }
- bool learnt () const { return size_etc & 1; }
- uint32_t mark () const { return (size_etc >> 1) & 3; }
- void mark (uint32_t m) { size_etc = (size_etc & ~6) | ((m & 3) << 1); }
- const Lit& last () const { return data[size()-1]; }
-
- // NOTE: somewhat unsafe to change the clause in-place! Must manually call 'calcAbstraction' afterwards for
- // subsumption operations to behave correctly.
- Lit& operator [] (int i) { return data[i]; }
- Lit operator [] (int i) const { return data[i]; }
- operator const Lit* (void) const { return data; }
-
- float& activity () { return extra.act; }
- uint32_t abstraction () const { return extra.abst; }
-
- Lit subsumes (const Clause& other) const;
- void strengthen (Lit p);
-};
-
-
-/*_________________________________________________________________________________________________
-|
-| subsumes : (other : const Clause&) -> Lit
-|
-| Description:
-| Checks if clause subsumes 'other', and at the same time, if it can be used to simplify 'other'
-| by subsumption resolution.
-|
-| Result:
-| lit_Error - No subsumption or simplification
-| lit_Undef - Clause subsumes 'other'
-| p - The literal p can be deleted from 'other'
-|________________________________________________________________________________________________@*/
-inline Lit Clause::subsumes(const Clause& other) const
-{
- if (other.size() < size() || (extra.abst & ~other.extra.abst) != 0)
- return lit_Error;
-
- Lit ret = lit_Undef;
- const Lit* c = (const Lit*)(*this);
- const Lit* d = (const Lit*)other;
-
- for (int i = 0; i < size(); i++) {
- // search for c[i] or ~c[i]
- for (int j = 0; j < other.size(); j++)
- if (c[i] == d[j])
- goto ok;
- else if (ret == lit_Undef && c[i] == ~d[j]){
- ret = c[i];
- goto ok;
- }
-
- // did not find it
- return lit_Error;
- ok:;
- }
-
- return ret;
-}
-
-
-inline void Clause::strengthen(Lit p)
-{
- remove(*this, p);
- calcAbstraction();
-}
-
-};
-
-#endif
+++ /dev/null
-Niklas Eén
-Niklas Sörensson
-Mate SOOS <mate.soos@inrialpes.fr>
-Karsten Nohl <honk98@web.de>
-
-thanks to:
-- the authors' professors for their trust in their PhD students' capabilities
-- the gcc compiler team for the excellent C++ compiler
-- libstdc team for the excellent standard library
-- Bjarne Stroustrup for the excellent C++
+++ /dev/null
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a
-copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be included
-in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
-OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+++ /dev/null
-/***********************************************************************************
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-#include <time.h>
-#include <cstring>
-#include <algorithm>
-#include <vector>
-#include <iostream>
-#include <iomanip>
-#include <fstream>
-#include <sstream>
-using std::cout;
-using std::endl;
-using std::ofstream;
-
-#include "Logger.h"
-#include "fcopy.h"
-#include "SolverTypes.h"
-
-namespace MINISAT
-{
-
-#define MAX_VAR 1000000
-
-#define FST_WIDTH 10
-#define SND_WIDTH 35
-#define TRD_WIDTH 10
-
-Logger::Logger(int& _verbosity) :
- proof_graph_on(false),
- statistics_on(false),
-
- max_print_lines(20),
- uniqueid(1),
- level(0),
- begin_level(0),
- max_group(0),
-
- proof(NULL),
- proof_num(0),
-
- sum_conflict_depths(0),
- no_conflicts(0),
- no_decisions(0),
- no_propagations(0),
- sum_decisions_on_branches(0),
- sum_propagations_on_branches(0),
-
- verbosity(_verbosity)
-{
- runid /= 10;
- runid=time(NULL)%10000;
- if (verbosity >= 1) printf("RunID is: #%d\n",runid);
-
- sprintf(filename0,"proofs/%d-proof0.dot", runid);
-}
-
-// Adds a new variable to the knowledge of the logger
-void Logger::new_var(const Var var)
-{
- assert(var < MAX_VAR);
-
- if (varnames.size() <= var) {
- varnames.resize(var+1);
- times_var_propagated.resize(var+1);
- times_var_guessed.resize(var+1);
- depths_of_assigns_for_var.resize(var+1);
- }
-}
-
-// Resizes the groupnames and other, related vectors to accomodate for a new group
-void Logger::new_group(const uint group)
-{
- if (groupnames.size() <= group) {
- uint old_size = times_group_caused_propagation.size();
- groupnames.resize(group+1, "Noname");
- times_group_caused_conflict.resize(group+1);
- times_group_caused_propagation.resize(group+1);
- depths_of_propagations_for_group.resize(group+1);
- depths_of_conflicts_for_group.resize(group+1);
- for (uint i = old_size; i < times_group_caused_propagation.size(); i++) {
- times_group_caused_propagation[i] = 0;
- times_group_caused_conflict[i] = 0;
- }
- }
-
- max_group = std::max(group, max_group);
-}
-
-// Adds the new clause group's name to the information stored
-void Logger::set_group_name(const uint group, const char* name)
-{
- new_group(group);
-
- if (strlen(name) > SND_WIDTH-2) {
- cout << "A clause group name cannot have more than " << SND_WIDTH-2 << " number of characters. You gave '" << name << "', which is " << strlen(name) << " long." << endl;
- exit(-1);
- }
-
- if (groupnames[group].empty() || groupnames[group] == "Noname") {
- groupnames[group] = name;
- } else if (name != '\0' && groupnames[group] != name) {
- printf("Error! Group no. %d has been named twice. First, as '%s', then second as '%s'. Name the same group the same always, or don't give a name to the second iteration of the same group (i.e just write 'c g groupnumber' on the line\n", group, groupnames[group].c_str(), name);
- exit(-1);
- }
-}
-
-// sets the variable's name
-void Logger::set_variable_name(const uint var, const char* name)
-{
- if (!proof_graph_on && !statistics_on) return;
-
- if (strlen(name) > SND_WIDTH-2) {
- cout << "A variable name cannot have more than " << SND_WIDTH-2 << " number of characters. You gave '" << name << "', which is " << strlen(name) << " long." << endl;
- exit(-1);
- }
-
- new_var(var);
- varnames[var] = name;
-}
-
-void Logger::begin()
-{
- char filename[80];
- sprintf(filename, "proofs/%d-proof%d.dot", runid, proof_num);
-
- if (proof_num > 0) {
- if (proof_graph_on) {
- FileCopy(filename0, filename);
- proof = fopen(filename,"a");
- if (!proof) printf("Couldn't open proof file '%s' for writing\n", filename), exit(-1);
- }
- } else {
- history.growTo(10);
- history[level] = uniqueid;
-
- if (proof_graph_on) {
- proof = fopen(filename,"w");
- if (!proof) printf("Couldn't open proof file '%s' for writing\n", filename), exit(-1);
- fprintf(proof, "digraph G {\n");
- fprintf(proof,"node%d [shape=circle, label=\"BEGIN\", root];\n", uniqueid);
- }
- }
-
- if (statistics_on)
- reset_statistics();
-
- level = begin_level;
-}
-
-// For noting conflicts. Updates the proof graph and the statistics.
-void Logger::conflict(const confl_type type, uint goback, const uint group, const vec<Lit>& learnt_clause)
-{
- assert(!(proof == NULL && proof_graph_on));
- assert(goback < level);
-
- goback += begin_level;
- uniqueid++;
-
- if (proof_graph_on) {
- fprintf(proof,"node%d [shape=polygon,sides=5,label=\"",uniqueid);
- for (int i = 0; i < learnt_clause.size(); i++) {
- if (learnt_clause[i].sign()) fprintf(proof,"-");
- int myvar = learnt_clause[i].var();
- if (varnames.size() <= myvar || varnames[myvar].empty())
- fprintf(proof,"%d\\n",myvar+1);
- else fprintf(proof,"%s\\n",varnames[myvar].c_str());
- }
-
- fprintf(proof,"\"];\n");
-
- fprintf(proof,"node%d -> node%d [label=\"",history[level],uniqueid);
-
- if (type == gauss_confl_type) {
- fprintf(proof,"Gauss\",style=bold");
- } else if (group > max_group) fprintf(proof,"**%d\"",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\"", group);
- else fprintf(proof,"%s\"", groupnames[group].c_str());
- }
-
- fprintf(proof,"];\n");
- fprintf(proof,"node%d -> node%d [style=bold];\n",uniqueid,history[goback]);
- }
-
- if (statistics_on) {
- const uint depth = level - begin_level;
-
- if (group < max_group) { //TODO make work for learnt clauses
- times_group_caused_conflict[group]++;
- depths_of_conflicts_for_group[group].push_back(depth);
- }
- no_conflicts++;
- sum_conflict_depths += depth;
- sum_decisions_on_branches += decisions[depth];
- sum_propagations_on_branches += propagations[depth];
- branch_depth_distrib[depth]++;
- }
-
- level = goback;
-}
-
-// For the really strange event that the solver is given an empty clause
-void Logger::empty_clause(const uint group)
-{
- assert(!(proof == NULL && proof_graph_on));
-
- if (proof_graph_on) {
- fprintf(proof,"node%d -> node%d [label=\"emtpy clause:",history[level],uniqueid+1);
- if (group > max_group) fprintf(proof,"**%d\\n",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\\n", group);
- else fprintf(proof,"%s\\n", groupnames[group].c_str());
- }
-
- fprintf(proof,"\"];\n");
- }
-}
-
-// Propagating a literal. Type of literal and the (learned clause's)/(propagating clause's)/(etc) group must be given. Updates the proof graph and the statistics. note: the meaning of the variable 'group' depends on the type
-void Logger::propagation(const Lit lit, const prop_type type, const uint group)
-{
- assert(!(proof == NULL && proof_graph_on));
- uniqueid++;
-
- //graph
- if (proof_graph_on) {
- fprintf(proof,"node%d [shape=box, label=\"",uniqueid);;
- if (lit.sign()) fprintf(proof,"-");
- if (varnames.size() <= lit.var() || varnames[lit.var()].empty())
- fprintf(proof,"%d\"];\n",lit.var()+1);
- else fprintf(proof,"%s\"];\n",varnames[lit.var()].c_str());
-
- fprintf(proof,"node%d -> node%d [label=\"",history[level],uniqueid);
- switch (type) {
-
- case revert_guess_type:
- case simple_propagation_type:
- assert(group != UINT_MAX);
- if (group > max_group) fprintf(proof,"**%d\\n",group);
- else {
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"%d\\n", group);
- else fprintf(proof,"%s\\n", groupnames[group].c_str());
- }
-
- fprintf(proof,"\"];\n");
- break;
-
- case gauss_propagation_type:
- fprintf(proof,"Gauss\",style=bold];\n");
- break;
-
- case learnt_unit_clause_type:
- fprintf(proof,"learnt unit clause\",style=bold];\n");
- break;
-
- case assumption_type:
- fprintf(proof,"assumption\"];\n");
- break;
-
- case guess_type:
- fprintf(proof,"guess\",style=dotted];\n");
- break;
-
- case addclause_type:
- assert(group != UINT_MAX);
- if (groupnames.size() <= group || groupnames[group].empty())
- fprintf(proof,"red. from %d\"];\n",group);
- else fprintf(proof,"red. from %s\"];\n",groupnames[group].c_str());
- break;
- }
- }
-
- if (statistics_on && proof_num > 0) switch (type) {
- case gauss_propagation_type:
- case simple_propagation_type:
- no_propagations++;
- times_var_propagated[lit.var()]++;
- if (group < max_group) { //TODO make work for learnt clauses
- depths_of_propagations_for_group[group].push_back(level - begin_level);
- times_group_caused_propagation[group]++;
- }
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- break;
-
- case learnt_unit_clause_type: //when learning unit clause
- case revert_guess_type: //when, after conflict, a guess gets reverted
- if (group < max_group) { //TODO make work for learnt clauses
- times_group_caused_propagation[group]++;
- depths_of_propagations_for_group[group].push_back(level - begin_level);
- }
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- case guess_type:
- times_var_guessed[lit.var()]++;
- depths_of_assigns_for_var[lit.var()].push_back(level - begin_level);
- no_decisions++;
- break;
-
- case addclause_type:
- case assumption_type:
- assert(false);
- }
-
- level++;
-
- if (proof_num > 0) {
- decisions.growTo(level-begin_level+1);
- propagations.growTo(level-begin_level+1);
- if (level-begin_level == 1) {
- decisions[0] = 0;
- propagations[0] = 0;
- //note: we might reach this place TWICE in the same restart. This is because the first assignement might get reverted
- }
- if (type == simple_propagation_type) {
- decisions[level-begin_level] = decisions[level-begin_level-1];
- propagations[level-begin_level] = propagations[level-begin_level-1]+1;
- } else {
- decisions[level-begin_level] = decisions[level-begin_level-1]+1;
- propagations[level-begin_level] = propagations[level-begin_level-1];
- }
- }
-
- if (history.size() < level+1) history.growTo(level+10);
- history[level] = uniqueid;
-}
-
-// Ending of a restart iteration. Also called when ending S.simplify();
-void Logger::end(const finish_type finish)
-{
- assert(!(proof == NULL && proof_graph_on));
-
- switch (finish) {
- case model_found: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"MODEL\"];\n",uniqueid);
- break;
- }
- case unsat_model_found: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"UNSAT\"];\n",uniqueid);
- break;
- }
- case restarting: {
- uniqueid++;
- if (proof_graph_on) fprintf(proof,"node%d [shape=doublecircle, label=\"Re-starting\\nsearch\"];\n",uniqueid);
- break;
- }
- case done_adding_clauses: {
- begin_level = level;
- break;
- }
- }
-
- if (proof_graph_on) {
- if (proof_num > 0) {
- fprintf(proof,"node%d -> node%d;\n",history[level],uniqueid);
- fprintf(proof,"}\n");
- } else proof0_lastid = uniqueid;
-
- proof = (FILE*)fclose(proof);
- assert(proof == NULL);
-
- if (finish == model_found || finish == unsat_model_found) {
- proof = fopen(filename0,"a");
- fprintf(proof,"node%d [shape=doublecircle, label=\"Done adding\\nclauses\"];\n",proof0_lastid+1);
- fprintf(proof,"node%d -> node%d;\n",proof0_lastid,proof0_lastid+1);
- fprintf(proof,"}\n");
- proof = (FILE*)fclose(proof);
- assert(proof == NULL);
- }
- }
-
- if (statistics_on) printstats();
-
- proof_num++;
-}
-
-void Logger::print_footer() const
-{
- cout << "+" << std::setfill('-') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "-" << std::setfill(' ') << "+" << endl;
-}
-
-void Logger::print_assign_var_order() const
-{
- vector<pair<double, uint> > prop_ordered;
- for (uint i = 0; i < depths_of_assigns_for_var.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_assigns_for_var[i].begin(); it != depths_of_assigns_for_var[i].end(); it++)
- avg += *it;
- if (depths_of_assigns_for_var[i].size() > 0) {
- avg /= (double) depths_of_assigns_for_var[i].size();
- prop_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!prop_ordered.empty()) {
- print_footer();
- print_simple_line(" Variables are assigned in the following order");
- print_header("var", "var name", "avg order");
- std::sort(prop_ordered.begin(), prop_ordered.end());
- print_vars(prop_ordered);
- }
-}
-
-void Logger::print_prop_order() const
-{
- vector<pair<double, uint> > prop_ordered;
- for (uint i = 0; i < depths_of_propagations_for_group.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_propagations_for_group[i].begin(); it != depths_of_propagations_for_group[i].end(); it++)
- avg += *it;
- if (depths_of_propagations_for_group[i].size() > 0) {
- avg /= (double) depths_of_propagations_for_group[i].size();
- prop_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!prop_ordered.empty()) {
- print_footer();
- print_simple_line(" Propagation depth order of clause groups");
- print_header("group", "group name", "avg order");
- std::sort(prop_ordered.begin(), prop_ordered.end());
- print_groups(prop_ordered);
- }
-}
-
-void Logger::print_confl_order() const
-{
- vector<pair<double, uint> > confl_ordered;
- for (uint i = 0; i < depths_of_conflicts_for_group.size(); i++) {
- double avg = 0.0;
- for (vector<uint>::const_iterator it = depths_of_conflicts_for_group[i].begin(); it != depths_of_conflicts_for_group[i].end(); it++)
- avg += *it;
- if (depths_of_conflicts_for_group[i].size() > 0) {
- avg /= (double) depths_of_conflicts_for_group[i].size();
- confl_ordered.push_back(std::make_pair(avg, i));
- }
- }
-
- if (!confl_ordered.empty()) {
- print_footer();
- print_simple_line(" Avg. conflict depth order of clause groups");
- print_header("groupno", "group name", "avg. depth");
- std::sort(confl_ordered.begin(), confl_ordered.end());
- print_groups(confl_ordered);
- }
-}
-
-
-void Logger::print_times_var_guessed() const
-{
- vector<pair<uint, uint> > times_var_ordered;
- for (int i = 0; i < varnames.size(); i++) if (times_var_guessed[i] > 0)
- times_var_ordered.push_back(std::make_pair(times_var_guessed[i], i));
-
- if (!times_var_ordered.empty()) {
- print_footer();
- print_simple_line(" No. times variable branched on");
- print_header("var", "var name", "no. times");
- std::sort(times_var_ordered.rbegin(), times_var_ordered.rend());
- print_vars(times_var_ordered);
- }
-}
-
-void Logger::print_times_group_caused_propagation() const
-{
- vector<pair<uint, uint> > props_group_ordered;
- for (uint i = 0; i < times_group_caused_propagation.size(); i++)
- if (times_group_caused_propagation[i] > 0)
- props_group_ordered.push_back(std::make_pair(times_group_caused_propagation[i], i));
-
- if (!props_group_ordered.empty()) {
- print_footer();
- print_simple_line(" No. propagations made by clause groups");
- print_header("group", "group name", "no. props");
- std::sort(props_group_ordered.rbegin(),props_group_ordered.rend());
- print_groups(props_group_ordered);
- }
-}
-
-void Logger::print_times_group_caused_conflict() const
-{
- vector<pair<uint, uint> > confls_group_ordered;
- for (uint i = 0; i < times_group_caused_conflict.size(); i++)
- if (times_group_caused_conflict[i] > 0)
- confls_group_ordered.push_back(std::make_pair(times_group_caused_conflict[i], i));
-
- if (!confls_group_ordered.empty()) {
- print_footer();
- print_simple_line(" No. conflicts made by clause groups");
- print_header("group", "group name", "no. confl");
- std::sort(confls_group_ordered.rbegin(), confls_group_ordered.rend());
- print_groups(confls_group_ordered);
- }
-}
-
-template<class T>
-inline void Logger::print_line(const uint& number, const string& name, const T& value) const
-{
- cout << "|" << std::setw(FST_WIDTH) << number << " " << std::setw(SND_WIDTH) << name << " " << std::setw(TRD_WIDTH) << value << "|" << endl;
-}
-
-void Logger::print_header(const string& first, const string& second, const string& third) const
-{
- cout << "|" << std::setw(FST_WIDTH) << first << " " << std::setw(SND_WIDTH) << second << " " << std::setw(TRD_WIDTH) << third << "|" << endl;
- print_footer();
-}
-
-void Logger::print_groups(const vector<pair<double, uint> >& to_print) const
-{
- uint i = 0;
- typedef vector<pair<double, uint> >::const_iterator myiterator;
- for (myiterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- string name;
-
- if (it->second > max_group)
- name = "learnt clause";
- else
- name = groupnames[it->second];
-
- print_line(it->second+1, name, it->first);
- }
- print_footer();
-}
-
-void Logger::print_groups(const vector<pair<uint, uint> >& to_print) const
-{
- uint i = 0;
- typedef vector<pair<uint, uint> >::const_iterator myiterator;
- for (myiterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- string name;
-
- if (it->second > max_group)
- name = "learnt clause";
- else
- name = groupnames[it->second];
-
- print_line(it->second+1, name, it->first);
- }
- print_footer();
-}
-
-void Logger::print_vars(const vector<pair<double, uint> >& to_print) const
-{
- uint i = 0;
- for (vector<pair<double, uint> >::const_iterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++)
- print_line(it->second+1, varnames[it->second], it->first);
-
- print_footer();
-}
-
-void Logger::print_vars(const vector<pair<uint, uint> >& to_print) const
-{
- uint i = 0;
- for (vector<pair<uint, uint> >::const_iterator it = to_print.begin(); it != to_print.end() && i < max_print_lines; it++, i++) {
- print_line(it->second+1, varnames[it->second], it->first);
- }
-
- print_footer();
-}
-
-template<class T>
-void Logger::print_line(const string& str, const T& num) const
-{
- cout << "|" << std::setw(FST_WIDTH+SND_WIDTH+4) << str << std::setw(TRD_WIDTH) << num << "|" << endl;
-}
-
-void Logger::print_simple_line(const string& str) const
-{
- cout << "|" << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << str << "|" << endl;
-}
-
-void Logger::print_branch_depth_distrib() const
-{
- //cout << "--- Branch depth stats ---" << endl;
-
- const uint range = 20;
- map<uint, uint> range_stat;
-
- for (map<uint, uint>::const_iterator it = branch_depth_distrib.begin(); it != branch_depth_distrib.end(); it++) {
- //cout << it->first << " : " << it->second << endl;
- range_stat[it->first/range] += it->second;
- }
- //cout << endl;
-
- print_footer();
- print_simple_line(" No. search branches with branch depth between");
- print_line("Branch depth between", "no. br.-s");
- print_footer();
-
- std::stringstream ss;
- ss << "branch_depths/branch_depth_file" << runid << "-" << proof_num << ".txt";
- ofstream branch_depth_file;
- branch_depth_file.open(ss.str().c_str());
- uint i = 0;
-
- for (map<uint, uint>::iterator it = range_stat.begin(); it != range_stat.end(); it++) {
- std::stringstream ss2;
- ss2 << it->first*range << " - " << it->first*range + range-1;
- print_line(ss2.str(), it->second);
-
- if (branch_depth_file.is_open()) {
- branch_depth_file << i << "\t" << it->second << "\t";
- if (i % 5 == 0)
- branch_depth_file << "\"" << it->first*range << "\"";
- else
- branch_depth_file << "\"\"";
- branch_depth_file << endl;
- }
- i++;
- }
- if (branch_depth_file.is_open())
- branch_depth_file.close();
- print_footer();
-
-}
-
-void Logger::print_general_stats(uint restarts, uint64_t conflicts, int vars, int noClauses, uint64_t clauses_Literals, int noLearnts, double litsPerLearntCl, double progressEstimate) const
-{
- print_footer();
- print_simple_line(" Standard MiniSat restart statistics");
- print_footer();
- print_line("Restart number", restarts);
- print_line("Number of conflicts", conflicts);
- print_line("Number of variables", vars);
- print_line("Number of clauses", noClauses);
- print_line("Number of literals in clauses",clauses_Literals);
- print_line("Avg. literals per learnt clause",litsPerLearntCl);
- print_line("Progress estimate (%):", progressEstimate);
- print_footer();
-}
-
-
-// Prints statistics on the console
-void Logger::printstats() const
-{
- assert(statistics_on);
- assert(varnames.size() == times_var_guessed.size());
- assert(varnames.size() == times_var_propagated.size());
-
- printf("\n");
- cout << "+" << std::setfill('=') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "=" << "+" << endl;
- cout << "||" << std::setfill('*') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+2) << "********* STATS FOR THIS RESTART BEGIN " << "||" << endl;
- cout << "+" << std::setfill('=') << std::setw(FST_WIDTH+SND_WIDTH+TRD_WIDTH+4) << "=" << std::setfill(' ') << "+" << endl;
- cout.setf(std::ios_base::left);
- cout.precision(4);
- print_times_var_guessed();
- print_times_group_caused_propagation();
- print_times_group_caused_conflict();
- print_prop_order();
- print_confl_order();
- print_assign_var_order();
- print_branch_depth_distrib();
-
- print_footer();
- print_simple_line(" Advanced statistics");
- print_footer();
- print_line("No. branches visited", no_conflicts);
- print_line("Avg. branch depth", (double)sum_conflict_depths/(double)no_conflicts);
- print_line("No. decisions", no_decisions);
- print_line("No. propagations",no_propagations);
-
- //printf("no progatations/no decisions (i.e. one decision gives how many propagations on average *for the whole search graph*): %f\n", (double)no_propagations/(double)no_decisions);
- //printf("no propagations/sum decisions on branches (if you look at one specific branch, what is the average number of propagations you will find?): %f\n", (double)no_propagations/(double)sum_decisions_on_branches);
-
- print_simple_line("sum decisions on branches/no. branches");
- print_simple_line(" (in a given branch, what is the avg.");
- print_line(" no. of decisions?)",(double)sum_decisions_on_branches/(double)no_conflicts);
-
- print_simple_line("sum propagations on branches/no. branches");
- print_simple_line(" (in a given branch, what is the");
- print_line(" avg. no. of propagations?)",(double)sum_propagations_on_branches/(double)no_conflicts);
- print_footer();
-
- print_footer();
- print_simple_line("Statistics note: If you used CryptoMiniSat as");
- print_simple_line("a library then vars are all shifted by 1 here");
- print_simple_line("and in every printed output of the solver.");
- print_simple_line("This does not apply when you use CryptoMiniSat");
- print_simple_line("as a stand-alone program.");
- print_footer();
-}
-
-// resets all stored statistics. Might be useful, to generate statistics for each restart and not for the whole search in general
-void Logger::reset_statistics()
-{
- assert(times_var_guessed.size() == times_var_propagated.size());
- assert(times_group_caused_conflict.size() == times_group_caused_propagation.size());
-
- typedef vector<uint>::iterator vecit;
- for (vecit it = times_var_guessed.begin(); it != times_var_guessed.end(); it++)
- *it = 0;
-
- for (vecit it = times_var_propagated.begin(); it != times_var_propagated.end(); it++)
- *it = 0;
-
- for (vecit it = times_group_caused_conflict.begin(); it != times_group_caused_conflict.end(); it++)
- *it = 0;
-
- for (vecit it = times_group_caused_propagation.begin(); it != times_group_caused_propagation.end(); it++)
- *it = 0;
-
- for (vecit it = confls_by_group.begin(); it != confls_by_group.end(); it++)
- *it = 0;
-
- for (vecit it = props_by_group.begin(); it != props_by_group.end(); it++)
- *it = 0;
-
- typedef vector<vector<uint> >::iterator vecvecit;
-
- for (vecvecit it = depths_of_propagations_for_group.begin(); it != depths_of_propagations_for_group.end(); it++)
- it->clear();
-
- for (vecvecit it = depths_of_conflicts_for_group.begin(); it != depths_of_conflicts_for_group.end(); it++)
- it->clear();
-
- for (vecvecit it = depths_of_assigns_for_var.begin(); it != depths_of_assigns_for_var.end(); it++)
- it->clear();
-
- sum_conflict_depths = 0;
- no_conflicts = 0;
- no_decisions = 0;
- no_propagations = 0;
- decisions.clear();
- propagations.clear();
- sum_decisions_on_branches = 0;
- sum_propagations_on_branches = 0;
- branch_depth_distrib.clear();
-}
-};
+++ /dev/null
-/***********************************************************************************
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef __LOGGER_H__
-#define __LOGGER_H__
-
-#include <stdio.h>
-#include <set>
-//#include <Vec.h>
-#include <vector>
-
-#include "mtl/Vec.h"
-#include "mtl/Heap.h"
-#include "mtl/Alg.h"
-#include "Logger.h"
-#include "SolverTypes.h"
-#include <string>
-#include <map>
-#include "stdint.h"
-#include "limits.h"
-
-using std::vector;
-using std::pair;
-using std::string;
-using std::map;
-
-
-namespace MINISAT
-{
-#ifndef uint
-#define uint unsigned int
-#endif
-
-class Logger
-{
-public:
- Logger(int& vebosity);
-
- //types of props, confl, and finish
- enum prop_type { revert_guess_type, learnt_unit_clause_type, assumption_type, guess_type, addclause_type, simple_propagation_type, gauss_propagation_type };
- enum confl_type { simple_confl_type, gauss_confl_type };
- enum finish_type { model_found, unsat_model_found, restarting, done_adding_clauses };
-
- //Conflict and propagation(guess is also a proapgation...)
- void conflict(const confl_type type, uint goback, const uint group, const vec<Lit>& learnt_clause);
- void propagation(const Lit lit, const prop_type type, const uint group = UINT_MAX);
- void empty_clause(const uint group);
-
- //functions to add/name variables
- void new_var(const Var var);
- void set_variable_name(const uint var, const char* name);
-
- //functions to add/name clause groups
- void new_group(const uint group);
- void set_group_name(const uint group, const char* name);
-
- void begin();
- void end(const finish_type finish);
- void print_general_stats(uint restarts, uint64_t conflicts, int vars, int noClauses, uint64_t clauses_Literals, int noLearnts, double litsPerLearntCl, double progressEstimate) const;
-
- void newclause(const vec<Lit>& ps, const bool xor_clause, const uint group);
-
- bool proof_graph_on;
- bool statistics_on;
-private:
- void print_groups(const vector<pair<uint, uint> >& to_print) const;
- void print_groups(const vector<pair<double, uint> >& to_print) const;
- void print_vars(const vector<pair<uint, uint> >& to_print) const;
- void print_vars(const vector<pair<double, uint> >& to_print) const;
- void print_times_var_guessed() const;
- void print_times_group_caused_propagation() const;
- void print_times_group_caused_conflict() const;
- void print_branch_depth_distrib() const;
-
- uint max_print_lines;
- template<class T>
- void print_line(const uint& number, const string& name, const T& value) const;
- void print_header(const string& first, const string& second, const string& third) const;
- void print_footer() const;
- template<class T>
- void print_line(const string& str, const T& num) const;
- void print_simple_line(const string& str) const;
- void print_confl_order() const;
- void print_prop_order() const;
- void print_assign_var_order() const;
- void printstats() const;
- void reset_statistics();
-
- //internal data structures
- uint uniqueid; //used to store the last unique ID given to a node
- vec<uint> history; //stores the node uniqueIDs
- uint level; //used to know the current level
- uint begin_level;
- uint max_group;
-
- //graph drawing
- FILE* proof; //The file to store the proof
- uint proof_num;
- char filename0[80];
- uint runid;
- uint proof0_lastid;
-
- //---------------------
- //statistics collection
- //---------------------
-
- //group and var names
- vector<string> groupnames;
- vector<string> varnames;
-
- //confls and props grouped by clause groups
- vector<uint> confls_by_group;
- vector<uint> props_by_group;
-
- //props and guesses grouped by vars
- vector<uint> times_var_guessed;
- vector<uint> times_var_propagated;
-
- vector<uint> times_group_caused_conflict;
- vector<uint> times_group_caused_propagation;
-
- vector<vector<uint> > depths_of_propagations_for_group;
- vector<vector<uint> > depths_of_conflicts_for_group;
- vector<vector<uint> > depths_of_assigns_for_var;
-
- //the distribution of branch depths. first = depth, second = number of occurances
- map<uint, uint> branch_depth_distrib;
-
- uint sum_conflict_depths;
- uint no_conflicts;
- uint no_decisions;
- uint no_propagations;
- vec<uint> decisions;
- vec<uint> propagations;
- uint sum_decisions_on_branches;
- uint sum_propagations_on_branches;
-
- //message display properties
- const int& verbosity;
-};
-
-};
-#endif //__LOGGER_H__
+++ /dev/null
-include ../../../scripts/Makefile.common
-MTL = mtl
-CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
-EXEC = minisat
-CFLAGS += -I$(MTL) -Wall -DEXT_HASH_MAP -ffloat-store $(CFLAGS_M32)
-LFLAGS = -lz
-
-include mtl/template.mk
-all: libminisat.a
- ranlib libminisat.a
- cp *.o ../
- cp libminisat.a ../
+++ /dev/null
-/****************************************************************************************[Solver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-#include "Solver.h"
-#include "Sort.h"
-#include <cmath>
-#include <string.h>
-#include <algorithm>
-#include <limits.h>
-#include <vector>
-#include "clause.h"
-
-namespace MINISAT
-{
-
-//=================================================================================================
-// Constructor/Destructor:
-
-
-Solver::Solver() :
- // Parameters: (formerly in 'SearchParams')
- var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02)
- , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1)
-
- // More parameters:
- //
- , expensive_ccmin (true)
- , polarity_mode (polarity_user)
- , verbosity (0)
- , restrictedPickBranch(0)
- , useRealUnknowns(false)
-
- // Statistics: (formerly in 'SolverStats')
- //
- , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0)
- , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0)
-
- , ok (true)
- , cla_inc (1)
- , var_inc (1)
- , qhead (0)
- , simpDB_assigns (-1)
- , simpDB_props (0)
- , order_heap (VarOrderLt(activity))
- , progress_estimate(0)
- , remove_satisfied (true)
- , mtrand((unsigned long int)0)
- , logger(verbosity)
- , dynamic_behaviour_analysis(false) //do not document the proof as default
- , maxRestarts(UINT_MAX)
- , learnt_clause_group(0)
-{
-}
-
-
-Solver::~Solver()
-{
- for (int i = 0; i < learnts.size(); i++) free(learnts[i]);
- for (int i = 0; i < unitary_learnts.size(); i++) free(unitary_learnts[i]);
- for (int i = 0; i < clauses.size(); i++) free(clauses[i]);
- for (int i = 0; i < xorclauses.size(); i++) free(xorclauses[i]);
-}
-
-//=================================================================================================
-// Minor methods:
-
-
-// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be
-// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result).
-Var Solver::newVar(bool sign, bool dvar)
-{
- int v = nVars();
- watches .push(); // (list for positive literal)
- watches .push(); // (list for negative literal)
- xorwatches.push(); // (list for variables in xors)
- reason .push(NULL);
- assigns .push(l_Undef);
- level .push(-1);
- activity .push(0);
- seen .push(0);
- polarity .push((char)sign);
-
- polarity .push((char)sign);
- decision_var.push((char)dvar);
-
- insertVarOrder(v);
- logger.new_var(v);
-
- return v;
-}
-
-bool Solver::addXorClause(vec<Lit>& ps, bool xor_clause_inverted, const uint group, const char* group_name)
-{
- assert(decisionLevel() == 0);
-
- if (dynamic_behaviour_analysis) logger.set_group_name(group, group_name);
-
- if (!ok)
- return false;
-
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p;
- int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
- while (ps[i].var() >= nVars()) newVar();
- xor_clause_inverted ^= ps[i].sign();
- ps[i] ^= ps[i].sign();
-
- if (ps[i] == p) {
- //added, but easily removed
- j--;
- p = lit_Undef;
- if (!assigns[ps[i].var()].isUndef())
- xor_clause_inverted ^= assigns[ps[i].var()].getBool();
- } else if (value(ps[i]) == l_Undef) //just add
- ps[j++] = p = ps[i];
- else xor_clause_inverted ^= (value(ps[i]) == l_True); //modify xor_clause_inverted instead of adding
- }
- ps.shrink(i - j);
-
- if (ps.size() == 0) {
- if (xor_clause_inverted)
- return true;
-
- if (dynamic_behaviour_analysis) logger.empty_clause(group);
- return ok = false;
- } else if (ps.size() == 1) {
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue( (xor_clause_inverted) ? ~ps[0] : ps[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation((xor_clause_inverted) ? ~ps[0] : ps[0], Logger::addclause_type, group);
- return ok = (propagate() == NULL);
- } else {
- learnt_clause_group = std::max(group+1, learnt_clause_group);
-
- XorClause* c = XorClause_new(ps, xor_clause_inverted, group);
-
- xorclauses.push(c);
- attachClause(*c);
- }
-
- return true;
-}
-
-bool Solver::addClause(vec<Lit>& ps, const uint group, const char* group_name)
-{
- assert(decisionLevel() == 0);
-
- if (dynamic_behaviour_analysis)
- logger.set_group_name(group, group_name);
-
- if (!ok)
- return false;
-
- // Check if clause is satisfied and remove false/duplicate literals:
- sort(ps);
- Lit p;
- int i, j;
- for (i = j = 0, p = lit_Undef; i < ps.size(); i++) {
- while (ps[i].var() >= nVars()) newVar();
-
- if (value(ps[i]) == l_True || ps[i] == ~p)
- return true;
- else if (value(ps[i]) != l_False && ps[i] != p)
- ps[j++] = p = ps[i];
- }
- ps.shrink(i - j);
-
- if (ps.size() == 0) {
- if (dynamic_behaviour_analysis) logger.empty_clause(group);
- return ok = false;
- } else if (ps.size() == 1) {
- assert(value(ps[0]) == l_Undef);
- uncheckedEnqueue(ps[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation(ps[0], Logger::addclause_type, group);
- return ok = (propagate() == NULL);
- } else {
- learnt_clause_group = std::max(group+1, learnt_clause_group);
-
- Clause* c = Clause_new(ps, group);
-
- clauses.push(c);
- attachClause(*c);
- }
-
- return true;
-}
-
-void Solver::attachClause(XorClause& c)
-{
- assert(c.size() > 1);
-
- xorwatches[c[0].var()].push(&c);
- xorwatches[c[1].var()].push(&c);
-
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size();
-}
-
-void Solver::attachClause(Clause& c)
-{
- assert(c.size() > 1);
-
- watches[(~c[0]).toInt()].push(&c);
- watches[(~c[1]).toInt()].push(&c);
-
- if (c.learnt()) learnts_literals += c.size();
- else clauses_literals += c.size();
-}
-
-
-void Solver::detachClause(const XorClause& c)
-{
- assert(c.size() > 1);
- assert(find(xorwatches[c[0].var()], &c));
- assert(find(xorwatches[c[1].var()], &c));
- remove(xorwatches[c[0].var()], &c);
- remove(xorwatches[c[1].var()], &c);
-
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size();
-}
-
-void Solver::detachClause(const Clause& c)
-{
- assert(c.size() > 1);
- assert(find(watches[(~c[0]).toInt()], &c));
- assert(find(watches[(~c[1]).toInt()], &c));
- remove(watches[(~c[0]).toInt()], &c);
- remove(watches[(~c[1]).toInt()], &c);
- if (c.learnt()) learnts_literals -= c.size();
- else clauses_literals -= c.size();
-}
-
-template<class T>
-void Solver::removeClause(T& c)
-{
- detachClause(c);
- free(&c);
-}
-
-
-bool Solver::satisfied(const Clause& c) const
-{
- for (uint i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True)
- return true;
- return false;
-}
-
-bool Solver::satisfied(const XorClause& c) const
-{
- bool final = c.xor_clause_inverted();
- for (uint k = 0; k < c.size(); k++ ) {
- const lbool& val = assigns[c[k].var()];
- if (val.isUndef()) return false;
- final ^= val.getBool();
- }
- return final;
-}
-
-
-// Revert to the state at given level (keeping all assignment at 'level' but not beyond).
-//
-void Solver::cancelUntil(int level)
-{
- #ifdef VERBOSE_DEBUG
- cout << "Canceling until level " << level;
- if (level > 0) cout << " sublevel: " << trail_lim[level];
- cout << endl;
- #endif
-
- if (decisionLevel() > level) {
- for (int c = trail.size()-1; c >= trail_lim[level]; c--) {
- Var x = trail[c].var();
- #ifdef VERBOSE_DEBUG
- cout << "Canceling var " << x+1 << " sublevel:" << c << endl;
- #endif
- assigns[x] = l_Undef;
- insertVarOrder(x);
- }
- qhead = trail_lim[level];
- trail.shrink(trail.size() - trail_lim[level]);
- trail_lim.shrink(trail_lim.size() - level);
- }
-
- #ifdef VERBOSE_DEBUG
- cout << "Canceling finished. (now at level: " << decisionLevel() << " sublevel:" << trail.size()-1 << ")" << endl;
- #endif
-}
-
-//Permutates the clauses in the solver. Very useful to calcuate the average time it takes the solver to solve the prolbem
-void Solver::permutateClauses()
-{
- for (int i = 0; i < clauses.size(); i++) {
- int j = mtrand.randInt(i);
- Clause* tmp = clauses[i];
- clauses[i] = clauses[j];
- clauses[j] = tmp;
- }
-
- for (int i = 0; i < xorclauses.size(); i++) {
- int j = mtrand.randInt(i);
- XorClause* tmp = xorclauses[i];
- xorclauses[i] = xorclauses[j];
- xorclauses[j] = tmp;
- }
-}
-
-void Solver::setRealUnknown(const uint var)
-{
- if (realUnknowns.size() < var+1)
- realUnknowns.resize(var+1, false);
- realUnknowns[var] = true;
-}
-
-void Solver::printLit(const Lit l) const
-{
- printf("%s%d:%c", l.sign() ? "-" : "", l.var()+1, value(l) == l_True ? '1' : (value(l) == l_False ? '0' : 'X'));
-}
-
-
-void Solver::printClause(const Clause& c) const
-{
- printf("(group: %d) ", c.group);
- for (uint i = 0; i < c.size();) {
- printLit(c[i]);
- i++;
- if (i < c.size()) printf(" ");
- }
-}
-
-void Solver::printClause(const XorClause& c) const
-{
- printf("(group: %d) ", c.group);
- if (c.xor_clause_inverted()) printf(" /inverted/ ");
- for (uint i = 0; i < c.size();) {
- printLit(c[i].unsign());
- i++;
- if (i < c.size()) printf(" + ");
- }
-}
-
-//=================================================================================================
-// Major methods:
-
-
-Lit Solver::pickBranchLit(int polarity_mode)
-{
- #ifdef VERBOSE_DEBUG
- cout << "decision level:" << decisionLevel() << " ";
- #endif
-
- Var next = var_Undef;
-
- // Random decision:
- if (mtrand.randDblExc() < random_var_freq && !order_heap.empty()) {
- if (restrictedPickBranch == 0) next = order_heap[mtrand.randInt(order_heap.size()-1)];
- else next = order_heap[mtrand.randInt(std::min((uint32_t)order_heap.size()-1, restrictedPickBranch))];
-
- if (assigns[next] == l_Undef && decision_var[next])
- rnd_decisions++;
- }
-
- // Activity based decision:
- //bool dont_do_bad_decision = false;
- //if (restrictedPickBranch != 0) dont_do_bad_decision = (mtrand.randInt(100) != 0);
- while (next == var_Undef || assigns[next] != l_Undef || !decision_var[next])
- if (order_heap.empty()) {
- next = var_Undef;
- break;
- } else {
- next = order_heap.removeMin();
- }
-
- bool sign = false;
- switch (polarity_mode) {
- case polarity_true:
- sign = false;
- break;
- case polarity_false:
- sign = true;
- break;
- case polarity_user:
- if (next != var_Undef)
- sign = polarity[next];
- break;
- case polarity_rnd:
- sign = mtrand.randInt(1);
- break;
- default:
- assert(false);
- }
-
- assert(next == var_Undef || value(next) == l_Undef);
-
- if (next == var_Undef) {
- #ifdef VERBOSE_DEBUG
- cout << "SAT!" << endl;
- #endif
- return lit_Undef;
- } else {
- Lit lit(next,sign);
- #ifdef VERBOSE_DEBUG
- cout << "decided on: " << lit.var()+1 << " to set:" << !lit.sign() << endl;
- #endif
- return lit;
- }
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyze : (confl : Clause*) (out_learnt : vec<Lit>&) (out_btlevel : int&) -> [void]
-|
-| Description:
-| Analyze conflict and produce a reason clause.
-|
-| Pre-conditions:
-| * 'out_learnt' is assumed to be cleared.
-| * Current decision level must be greater than root level.
-|
-| Post-conditions:
-| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'.
-|
-| Effect:
-| Will undo part of the trail, upto but not beyond the assumption of the current decision level.
-|________________________________________________________________________________________________@*/
-void Solver::analyze(Clause* confl, vec<Lit>& out_learnt, int& out_btlevel)
-{
- int pathC = 0;
- Lit p = lit_Undef;
-
- // Generate conflict clause:
- //
- out_learnt.push(); // (leave room for the asserting literal)
- int index = trail.size() - 1;
- out_btlevel = 0;
-
- do {
- assert(confl != NULL); // (otherwise should be UIP)
- Clause& c = *confl;
-
- if (c.learnt())
- claBumpActivity(c);
-
- for (uint j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++) {
- const Lit& q = c[j];
- const uint my_var = q.var();
-
- if (!seen[my_var] && level[my_var] > 0) {
- if (!useRealUnknowns || (my_var < realUnknowns.size() && realUnknowns[my_var]))
- varBumpActivity(my_var);
- seen[my_var] = 1;
- if (level[my_var] >= decisionLevel())
- pathC++;
- else {
- out_learnt.push(q);
- if (level[my_var] > out_btlevel)
- out_btlevel = level[my_var];
- }
- }
- }
-
- // Select next clause to look at:
- while (!seen[trail[index--].var()]);
- p = trail[index+1];
- confl = reason[p.var()];
- seen[p.var()] = 0;
- pathC--;
-
- } while (pathC > 0);
- out_learnt[0] = ~p;
-
- // Simplify conflict clause:
- //
- int i, j;
- if (expensive_ccmin) {
- uint32_t abstract_level = 0;
- for (i = 1; i < out_learnt.size(); i++)
- abstract_level |= abstractLevel(out_learnt[i].var()); // (maintain an abstraction of levels involved in conflict)
-
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++)
- if (reason[out_learnt[i].var()] == NULL || !litRedundant(out_learnt[i], abstract_level))
- out_learnt[j++] = out_learnt[i];
- } else {
- out_learnt.copyTo(analyze_toclear);
- for (i = j = 1; i < out_learnt.size(); i++) {
- const Clause& c = *reason[out_learnt[i].var()];
- for (uint k = 1; k < c.size(); k++)
- if (!seen[c[k].var()] && level[c[k].var()] > 0) {
- out_learnt[j++] = out_learnt[i];
- break;
- }
- }
- }
- max_literals += out_learnt.size();
- out_learnt.shrink(i - j);
- tot_literals += out_learnt.size();
-
- // Find correct backtrack level:
- //
- if (out_learnt.size() == 1)
- out_btlevel = 0;
- else {
- int max_i = 1;
- for (int i = 2; i < out_learnt.size(); i++)
- if (level[out_learnt[i].var()] > level[out_learnt[max_i].var()])
- max_i = i;
- Lit p = out_learnt[max_i];
- out_learnt[max_i] = out_learnt[1];
- out_learnt[1] = p;
- out_btlevel = level[p.var()];
- }
-
-
- for (int j = 0; j < analyze_toclear.size(); j++) seen[analyze_toclear[j].var()] = 0; // ('seen[]' is now cleared)
-}
-
-
-// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is
-// visiting literals at levels that cannot be removed later.
-bool Solver::litRedundant(Lit p, uint32_t abstract_levels)
-{
- analyze_stack.clear();
- analyze_stack.push(p);
- int top = analyze_toclear.size();
- while (analyze_stack.size() > 0) {
- assert(reason[analyze_stack.last().var()] != NULL);
- const Clause& c = *reason[analyze_stack.last().var()];
- analyze_stack.pop();
-
- for (uint i = 1; i < c.size(); i++) {
- Lit p = c[i];
- if (!seen[p.var()] && level[p.var()] > 0) {
- if (reason[p.var()] != NULL && (abstractLevel(p.var()) & abstract_levels) != 0) {
- seen[p.var()] = 1;
- analyze_stack.push(p);
- analyze_toclear.push(p);
- } else {
- for (int j = top; j < analyze_toclear.size(); j++)
- seen[analyze_toclear[j].var()] = 0;
- analyze_toclear.shrink(analyze_toclear.size() - top);
- return false;
- }
- }
- }
- }
-
- return true;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| analyzeFinal : (p : Lit) -> [void]
-|
-| Description:
-| Specialized analysis procedure to express the final conflict in terms of assumptions.
-| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and
-| stores the result in 'out_conflict'.
-|________________________________________________________________________________________________@*/
-void Solver::analyzeFinal(Lit p, vec<Lit>& out_conflict)
-{
- out_conflict.clear();
- out_conflict.push(p);
-
- if (decisionLevel() == 0)
- return;
-
- seen[p.var()] = 1;
-
- for (int i = trail.size()-1; i >= trail_lim[0]; i--) {
- Var x = trail[i].var();
- if (seen[x]) {
- if (reason[x] == NULL) {
- assert(level[x] > 0);
- out_conflict.push(~trail[i]);
- } else {
- const Clause& c = *reason[x];
- for (uint j = 1; j < c.size(); j++)
- if (level[c[j].var()] > 0)
- seen[c[j].var()] = 1;
- }
- seen[x] = 0;
- }
- }
-
- seen[p.var()] = 0;
-}
-
-
-void Solver::uncheckedEnqueue(Lit p, Clause* from)
-{
- #ifdef VERBOSE_DEBUG
- cout << "uncheckedEnqueue var " << p.var()+1 << " to " << !p.sign() << " level: " << decisionLevel() << " sublevel:" << trail.size() << endl;
- #endif
-
- assert(value(p) == l_Undef);
- const Var v = p.var();
- assigns [v] = boolToLBool(!p.sign());//lbool(!sign(p)); // <<== abstract but not uttermost effecient
- level [v] = decisionLevel();
- reason [v] = from;
- polarity[p.var()] = p.sign();
- trail.push(p);
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| propagate : [void] -> [Clause*]
-|
-| Description:
-| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned,
-| otherwise NULL.
-|
-| Post-conditions:
-| * the propagation queue is empty, even if there was a conflict.
-|________________________________________________________________________________________________@*/
-Clause* Solver::propagate(const bool xor_as_well)
-{
- Clause* confl = NULL;
- int num_props = 0;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagation started" << endl;
- #endif
-
- while (qhead < trail.size()) {
- Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate.
- vec<Clause*>& ws = watches[p.toInt()];
- Clause **i, **j, **end;
- num_props++;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagating lit " << (p.sign() ? '-' : ' ') << p.var()+1 << endl;
- #endif
-
- for (i = j = ws.getData(), end = i + ws.size(); i != end;) {
- Clause& c = **i++;
-
- // Make sure the false literal is data[1]:
- const Lit false_lit(~p);
- if (c[0] == false_lit)
- c[0] = c[1], c[1] = false_lit;
-
- assert(c[1] == false_lit);
-
- // If 0th watch is true, then clause is already satisfied.
- const Lit& first = c[0];
- if (value(first) == l_True) {
- *j++ = &c;
- } else {
- // Look for new watch:
- for (uint k = 2; k < c.size(); k++)
- if (value(c[k]) != l_False) {
- c[1] = c[k];
- c[k] = false_lit;
- watches[(~c[1]).toInt()].push(&c);
- goto FoundWatch;
- }
-
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
- if (value(first) == l_False) {
- confl = &c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- } else {
- uncheckedEnqueue(first, &c);
- if (dynamic_behaviour_analysis)
- logger.propagation(first,Logger::simple_propagation_type,c.group);
- }
- }
-FoundWatch:
- ;
- }
- ws.shrink(i - j);
-
- if (xor_as_well && !confl) confl = propagate_xors(p);
- }
- propagations += num_props;
- simpDB_props -= num_props;
-
- #ifdef VERBOSE_DEBUG
- cout << "Propagation ended." << endl;
- #endif
-
- return confl;
-}
-
-Clause* Solver::propagate_xors(const Lit& p)
-{
- #ifdef VERBOSE_DEBUG_XOR
- cout << "Xor-Propagating variable " << p.var()+1 << endl;
- #endif
-
- Clause* confl = NULL;
-
- vec<XorClause*>& ws = xorwatches[p.var()];
- XorClause **i, **j, **end;
- for (i = j = ws.getData(), end = i + ws.size(); i != end;) {
- XorClause& c = **i++;
-
- // Make sure the false literal is data[1]:
- if (c[0].var() == p.var()) {
- Lit tmp(c[0]);
- c[0] = c[1];
- c[1] = tmp;
- }
- assert(c[1].var() == p.var());
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "--> xor thing -- " << endl;
- printClause(c);
- cout << endl;
- #endif
- bool final = c.xor_clause_inverted();
- for (int k = 0, size = c.size(); k < size; k++ ) {
- const lbool& val = assigns[c[k].var()];
- if (val.isUndef() && k >= 2) {
- Lit tmp(c[1]);
- c[1] = c[k];
- c[k] = tmp;
- #ifdef VERBOSE_DEBUG_XOR
- cout << "new watch set" << endl << endl;
- #endif
- xorwatches[c[1].var()].push(&c);
- goto FoundWatch;
- }
-
- c[k] = c[k].unsign() ^ val.getBool();
- final ^= val.getBool();
- }
-
-
- {
- // Did not find watch -- clause is unit under assignment:
- *j++ = &c;
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "final: " << std::boolalpha << final << " - ";
- #endif
- if (assigns[c[0].var()].isUndef()) {
- c[0] = c[0].unsign()^final;
-
- #ifdef VERBOSE_DEBUG_XOR
- cout << "propagating ";
- printLit(c[0]);
- cout << endl;
- cout << "propagation clause -- ";
- printClause(*(Clause*)&c);
- cout << endl << endl;
- #endif
-
- uncheckedEnqueue(c[0], (Clause*)&c);
- if (dynamic_behaviour_analysis)
- logger.propagation(c[0], Logger::simple_propagation_type, c.group);
- } else if (!final) {
-
- #ifdef VERBOSE_DEBUG_XOR
- printf("conflict clause -- ");
- printClause(*(Clause*)&c);
- cout << endl << endl;
- #endif
-
- confl = (Clause*)&c;
- qhead = trail.size();
- // Copy the remaining watches:
- while (i < end)
- *j++ = *i++;
- } else {
- #ifdef VERBOSE_DEBUG_XOR
- printf("xor satisfied\n");
- #endif
-
- Lit tmp(c[0]);
- c[0] = c[1];
- c[1] = tmp;
- }
- }
-FoundWatch:
- ;
- }
- ws.shrink(i - j);
-
- return confl;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| reduceDB : () -> [void]
-|
-| Description:
-| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked
-| clauses are clauses that are reason to some assignment. Binary clauses are never removed.
-|________________________________________________________________________________________________@*/
-struct reduceDB_lt {
- bool operator () (Clause* x, Clause* y) {
- return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity());
- }
-};
-void Solver::reduceDB()
-{
- int i, j;
- double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity
-
- sort(learnts, reduceDB_lt());
- for (i = j = 0; i < learnts.size() / 2; i++) {
- if (learnts[i]->size() > 2 && !locked(*learnts[i]))
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- for (; i < learnts.size(); i++) {
- if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim)
- removeClause(*learnts[i]);
- else
- learnts[j++] = learnts[i];
- }
- learnts.shrink(i - j);
-}
-
-const vec<Clause*>& Solver::get_sorted_learnts()
-{
- sort(learnts, reduceDB_lt());
- return learnts;
-}
-
-const vec<Clause*>& Solver::get_unitary_learnts() const
-{
- return unitary_learnts;
-}
-
-void Solver::setMaxRestarts(const uint num)
-{
- maxRestarts = num;
-}
-
-template<class T>
-void Solver::removeSatisfied(vec<T*>& cs)
-{
- int i,j;
- for (i = j = 0; i < cs.size(); i++) {
- if (satisfied(*cs[i]))
- removeClause(*cs[i]);
- else
- cs[j++] = cs[i];
- }
- cs.shrink(i - j);
-}
-
-void Solver::cleanClauses(vec<Clause*>& cs)
-{
- uint useful = 0;
- for (int s = 0; s < cs.size(); s++) {
- Clause& c = *cs[s];
- Lit *i, *j, *end;
- uint at = 0;
- for (i = j = c.getData(), end = i + c.size(); i != end; i++, at++) {
- if (value(*i) == l_Undef) {
- *j = *i;
- j++;
- } else assert(at > 1);
- assert(value(*i) != l_True);
- }
- c.shrink(i-j);
- if (i-j > 0) useful++;
- }
- #ifdef VERBOSE_DEBUG
- cout << "cleanClauses(Clause) useful:" << useful << endl;
- #endif
-}
-
-void Solver::cleanClauses(vec<XorClause*>& cs)
-{
- uint useful = 0;
- for (int s = 0; s < cs.size(); s++) {
- XorClause& c = *cs[s];
- Lit *i, *j, *end;
- uint at = 0;
- for (i = j = c.getData(), end = i + c.size(); i != end; i++, at++) {
- const lbool& val = assigns[i->var()];
- if (val.isUndef()) {
- *j = *i;
- j++;
- } else /*assert(at>1),*/ c.invert(val.getBool());
- }
- c.shrink(i-j);
- if (i-j > 0) useful++;
- }
- #ifdef VERBOSE_DEBUG
- cout << "cleanClauses(XorClause) useful:" << useful << endl;
- #endif
-}
-
-/*_________________________________________________________________________________________________
-|
-| simplify : [void] -> [bool]
-|
-| Description:
-| Simplify the clause database according to the current top-level assigment. Currently, the only
-| thing done here is the removal of satisfied clauses, but more things can be put here.
-|________________________________________________________________________________________________@*/
-lbool Solver::simplify()
-{
- assert(decisionLevel() == 0);
-
- if (!ok || propagate() != NULL) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- ok = false;
- return l_False;
- }
-
- if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) {
- return l_Undef;
- }
-
- // Remove satisfied clauses:
- removeSatisfied(learnts);
- if (remove_satisfied) { // Can be turned off.
- removeSatisfied(clauses);
- removeSatisfied(xorclauses);
- }
-
- // Remove fixed variables from the variable heap:
- order_heap.filter(VarFilter(*this));
-
- simpDB_assigns = nAssigns();
- simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now)
-
- //cleanClauses(clauses);
- cleanClauses(xorclauses);
- //cleanClauses(learnts);
-
- return l_Undef;
-}
-
-
-/*_________________________________________________________________________________________________
-|
-| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool]
-|
-| Description:
-| Search for a model the specified number of conflicts, keeping the number of learnt clauses
-| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to
-| indicate infinity.
-|
-| Output:
-| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If
-| all variables are decision variables, this means that the clause set is satisfiable. 'l_False'
-| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached.
-|________________________________________________________________________________________________@*/
-lbool Solver::search(int nof_conflicts, int nof_learnts)
-{
- assert(ok);
- int conflictC = 0;
- vec<Lit> learnt_clause;
- llbool ret;
-
- starts++;
-
- if (dynamic_behaviour_analysis) logger.begin();
-
- for (;;) {
- Clause* confl = propagate();
-
- if (confl != NULL) {
- ret = handle_conflict(learnt_clause, confl, conflictC);
- if (ret != l_Nothing) return ret;
- } else {
- ret = new_decision(nof_conflicts, nof_learnts, conflictC);
- if (ret != l_Nothing) return ret;
- }
- }
-}
-
-llbool Solver::new_decision(int& nof_conflicts, int& nof_learnts, int& conflictC)
-{
- if (nof_conflicts >= 0 && conflictC >= nof_conflicts) {
- // Reached bound on number of conflicts:
- progress_estimate = progressEstimate();
- cancelUntil(0);
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::restarting);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_Undef;
- }
-
- // Simplify the set of problem clauses:
- if (decisionLevel() == 0 && simplify() == l_False) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- }
-
- if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts)
- // Reduce the set of learnt clauses:
- reduceDB();
-
- Lit next = lit_Undef;
- while (decisionLevel() < assumptions.size()) {
- // Perform user provided assumption:
- Lit p = assumptions[decisionLevel()];
- if (value(p) == l_True) {
- // Dummy decision level:
- newDecisionLevel();
- if (dynamic_behaviour_analysis) logger.propagation(p, Logger::assumption_type);
- } else if (value(p) == l_False) {
- analyzeFinal(~p, conflict);
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- } else {
- next = p;
- break;
- }
- }
-
- if (next == lit_Undef) {
- // New variable decision:
- decisions++;
- next = pickBranchLit(polarity_mode);
-
- if (next == lit_Undef) {
- // Model found:
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_True;
- }
- }
-
- // Increase decision level and enqueue 'next'
- assert(value(next) == l_Undef);
- newDecisionLevel();
- uncheckedEnqueue(next);
- if (dynamic_behaviour_analysis) logger.propagation(next, Logger::guess_type);
-
- return l_Nothing;
-}
-
-llbool Solver::handle_conflict(vec<Lit>& learnt_clause, Clause* confl, int& conflictC)
-{
- #ifdef VERBOSE_DEBUG
- cout << "Handling conflict: ";
- for (uint i = 0; i < learnt_clause.size(); i++)
- cout << learnt_clause[i].var()+1 << ",";
- cout << endl;
- #endif
-
- int backtrack_level;
-
- conflicts++;
- conflictC++;
- if (decisionLevel() == 0) {
- if (dynamic_behaviour_analysis) {
- logger.end(Logger::unsat_model_found);
- logger.print_general_stats(starts, conflicts, order_heap.size(), nClauses(), clauses_literals, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100);
- }
- return l_False;
- }
- learnt_clause.clear();
- analyze(confl, learnt_clause, backtrack_level);
- cancelUntil(backtrack_level);
- if (dynamic_behaviour_analysis)
- logger.conflict(Logger::simple_confl_type, backtrack_level, confl->group, learnt_clause);
-
- #ifdef VERBOSE_DEBUG
- cout << "Learning:";
- for (uint i = 0; i < learnt_clause.size(); i++) printLit(learnt_clause[i]), cout << " ";
- cout << endl;
- cout << "reverting var " << learnt_clause[0].var()+1 << " to " << !learnt_clause[0].sign() << endl;
- #endif
-
- assert(value(learnt_clause[0]) == l_Undef);
- //Unitary learnt
- if (learnt_clause.size() == 1) {
- Clause* c = Clause_new(learnt_clause, learnt_clause_group++, true);
- unitary_learnts.push(c);
- uncheckedEnqueue(learnt_clause[0]);
- if (dynamic_behaviour_analysis)
- logger.propagation(learnt_clause[0], Logger::learnt_unit_clause_type);
- assert(backtrack_level == 0 && "Unit clause learnt, so must cancel until level 0, right?");
-
- #ifdef VERBOSE_DEBUG
- cout << "Unit clause learnt." << endl;
- #endif
- //Normal learnt
- } else {
- Clause* c = Clause_new(learnt_clause, learnt_clause_group++, true);
- learnts.push(c);
- attachClause(*c);
- claBumpActivity(*c);
- uncheckedEnqueue(learnt_clause[0], c);
-
- if (dynamic_behaviour_analysis) {
- logger.propagation(learnt_clause[0], Logger::revert_guess_type, c->group);
- logger.new_group(c->group);
- logger.set_group_name(c->group, "learnt clause");
- }
- }
-
- varDecayActivity();
- claDecayActivity();
-
- return l_Nothing;
-}
-
-
-double Solver::progressEstimate() const
-{
- double progress = 0;
- double F = 1.0 / nVars();
-
- for (int i = 0; i <= decisionLevel(); i++) {
- int beg = i == 0 ? 0 : trail_lim[i - 1];
- int end = i == decisionLevel() ? trail.size() : trail_lim[i];
- progress += pow(F, i) * (end - beg);
- }
-
- return progress / nVars();
-}
-
-
-lbool Solver::solve(const vec<Lit>& assumps)
-{
- model.clear();
- conflict.clear();
-
- if (!ok) return l_False;
-
- assumps.copyTo(assumptions);
-
- double nof_conflicts = restart_first;
- double nof_learnts = nClauses() * learntsize_factor;
- lbool status = l_Undef;
-
- if (verbosity >= 1) {
- printf("============================[ Search Statistics ]==============================\n");
- printf("| Conflicts | ORIGINAL | LEARNT | Progress |\n");
- printf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n");
- printf("===============================================================================\n");
- }
-
- // Search:
- while (status == l_Undef && starts < maxRestarts) {
- if (verbosity >= 1 && !(dynamic_behaviour_analysis && logger.statistics_on)) {
- printf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout);
- printf("\n");
- }
- status = search((int)nof_conflicts, (int)nof_learnts);
- nof_conflicts *= restart_inc;
- nof_learnts *= learntsize_inc;
- }
-
- if (verbosity >= 1) {
- printf("===============================================================================");
- printf("\n");
- }
-
- if (status == l_True) {
- // Extend & copy model:
- model.growTo(nVars());
- for (int i = 0; i < nVars(); i++) model[i] = value(i);
-#ifndef NDEBUG
- verifyModel();
-#endif
- } if (status == l_False) {
- if (conflict.size() == 0)
- ok = false;
- }
-
- cancelUntil(0);
- return status;
-}
-
-//=================================================================================================
-// Debug methods:
-
-
-void Solver::verifyModel()
-{
- bool failed = false;
- for (int i = 0; i < clauses.size(); i++) {
- Clause& c = *clauses[i];
- for (uint j = 0; j < c.size(); j++)
- if (modelValue(c[j]) == l_True)
- goto next;
-
- printf("unsatisfied clause: ");
- printClause(*clauses[i]);
- printf("\n");
- failed = true;
-next:
- ;
- }
-
- for (int i = 0; i < xorclauses.size(); i++) {
- XorClause& c = *xorclauses[i];
- bool final = c.xor_clause_inverted();
- for (uint j = 0; j < c.size(); j++)
- final ^= (modelValue(c[j].unsign()) == l_True);
- if (!final) {
- printf("unsatisfied clause: ");
- printClause(*xorclauses[i]);
- printf("\n");
- failed = true;
- }
- }
-
- assert(!failed);
-
- printf("Verified %d original clauses.\n", clauses.size() + xorclauses.size());
-}
-
-
-void Solver::checkLiteralCount()
-{
- // Check that sizes are calculated correctly:
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- cnt += clauses[i]->size();
-
- for (int i = 0; i < xorclauses.size(); i++)
- cnt += xorclauses[i]->size();
-
- if ((int)clauses_literals != cnt) {
- fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt);
- assert((int)clauses_literals == cnt);
- }
-}
-};
+++ /dev/null
-/****************************************************************************************[Solver.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Solver_h
-#define Solver_h
-
-#include <cstdio>
-#include "mtl/Vec.h"
-#include "mtl/Heap.h"
-#include "mtl/Alg.h"
-#include "Logger.h"
-#include "MTRand/MersenneTwister.h"
-#include "SolverTypes.h"
-#include "clause.h"
-#include <string.h>
-
-#ifdef _MSC_VER
- #include <ctime>
-#else
- #include <sys/time.h>
- #include <sys/resource.h>
- #include <unistd.h>
-#endif
-
-namespace MINISAT
-{
-
-//#define VERBOSE_DEBUG_XOR
-//#define VERBOSE_DEBUG
-
-//=================================================================================================
-// Solver -- the main class:
-
-
-class Solver
-{
-public:
-
- // Constructor/Destructor:
- //
- Solver();
- ~Solver();
-
- // Problem specification:
- //
- Var newVar (bool polarity = true, bool dvar = true); // Add a new variable with parameters specifying variable mode.
- bool addClause (vec<Lit>& ps, const uint group, const char* group_name); // Add a clause to the solver. NOTE! 'ps' may be shrunk by this method!
- bool addXorClause (vec<Lit>& ps, bool xor_clause_inverted, const uint group, const char* group_name); // Add a xor-clause to the solver. NOTE! 'ps' may be shrunk by this method!
-
- // Solving:
- //
- lbool simplify (); // Removes already satisfied clauses.
- lbool solve (const vec<Lit>& assumps); // Search for a model that respects a given set of assumptions.
- lbool solve (); // Search without assumptions.
- bool okay () const; // FALSE means solver is in a conflicting state
-
- // Variable mode:
- //
- void setPolarity (Var v, bool b); // Declare which polarity the decision heuristic should use for a variable. Requires mode 'polarity_user'.
- void setDecisionVar (Var v, bool b); // Declare if a variable should be eligible for selection in the decision heuristic.
- void setSeed (const uint32_t seed); // Sets the seed to be the given number
- void permutateClauses(); // Permutates the clauses using the seed. It updates the seed in mtrand
- void needRealUnknowns(); // Uses the "real unknowns" set by setRealUnknown
- void setRealUnknown(const uint var); //sets a variable to be 'real', i.e. to preferentially branch on it during solving (when useRealUnknown it turned on)
- void setMaxRestarts(const uint num); //sets the maximum number of restarts to given value
-
- // Read state:
- //
- lbool value (const Var& x) const; // The current value of a variable.
- lbool value (const Lit& p) const; // The current value of a literal.
- lbool modelValue (const Lit& p) const; // The value of a literal in the last model. The last call to solve must have been satisfiable.
- int nAssigns () const; // The current number of assigned literals.
- int nClauses () const; // The current number of original clauses.
- int nLearnts () const; // The current number of learnt clauses.
- int nVars () const; // The current number of variables.
-
- // Extra results: (read-only member variable)
- //
- vec<lbool> model; // If problem is satisfiable, this vector contains the model (if any).
- vec<Lit> conflict; // If problem is unsatisfiable (possibly under assumptions),
- // this vector represent the final conflict clause expressed in the assumptions.
-
- // Mode of operation:
- //
- double var_decay; // Inverse of the variable activity decay factor. (default 1 / 0.95)
- double clause_decay; // Inverse of the clause activity decay factor. (1 / 0.999)
- double random_var_freq; // The frequency with which the decision heuristic tries to choose a random variable. (default 0.02)
- int restart_first; // The initial restart limit. (default 100)
- double restart_inc; // The factor with which the restart limit is multiplied in each restart. (default 1.5)
- double learntsize_factor; // The intitial limit for learnt clauses is a factor of the original clauses. (default 1 / 3)
- double learntsize_inc; // The limit for learnt clauses is multiplied with this factor each restart. (default 1.1)
- bool expensive_ccmin; // Controls conflict clause minimization. (default TRUE)
- int polarity_mode; // Controls which polarity the decision heuristic chooses. See enum below for allowed modes. (default polarity_false)
- int verbosity; // Verbosity level. 0=silent, 1=some progress report (default 0)
- uint restrictedPickBranch; // Pick variables to branch on preferentally from the highest [0, restrictedPickBranch]. If set to 0, preferentiality is turned off (i.e. picked randomly between [0, all])
- bool useRealUnknowns; // Whether 'real unknown' optimization should be used. If turned on, VarActivity is only bumped for variables for which the real_unknowns[var] == true
- vector<bool> realUnknowns; // The important variables. This vector stores 'false' at realUnknowns[var] if the var is not a real unknown, and stores a 'true' if it is a real unkown. If var is larger than realUnkowns.size(), then it is not an important variable
-
- enum { polarity_true = 0, polarity_false = 1, polarity_user = 2, polarity_rnd = 3 };
-
- // Statistics: (read-only member variable)
- //
- uint64_t starts, decisions, rnd_decisions, propagations, conflicts;
- uint64_t clauses_literals, learnts_literals, max_literals, tot_literals;
-
- //Logging
- void needStats(); // Prepares the solver to output statistics
- void needProofGraph(); // Prepares the solver to output proof graphs during solving
- void setVariableName(int var, const char* name); // Sets the name of the variable 'var' to 'name'. Useful for statistics and proof logs (i.e. used by 'logger')
- void startClauseAdding(); // Before adding clauses, but after setting up the Solver (need* functions, verbosity), this should be called
- void endFirstSimplify(); // After the clauses are added, and the first simplify() is called, this must be called
- const vec<Clause*>& get_sorted_learnts(); //return the set of learned clauses
- const vec<Clause*>& get_unitary_learnts() const; //return the set of unitary learned clauses
-
-protected:
- // Helper structures:
- //
- struct VarOrderLt {
- const vec<double>& activity;
- bool operator () (Var x, Var y) const {
- return activity[x] > activity[y];
- }
- VarOrderLt(const vec<double>& act) : activity(act) { }
- };
-
- friend class VarFilter;
- struct VarFilter {
- const Solver& s;
- VarFilter(const Solver& _s) : s(_s) {}
- bool operator()(Var v) const {
- return s.assigns[v].isUndef() && s.decision_var[v];
- }
- };
-
- // Solver state:
- //
- bool ok; // If FALSE, the constraints are already unsatisfiable. No part of the solver state may be used!
- vec<Clause*> clauses; // List of problem clauses.
- vec<XorClause*> xorclauses; // List of problem xor-clauses.
- vec<Clause*> learnts; // List of learnt clauses.
- vec<Clause*> unitary_learnts; // List of learnt clauses.
- double cla_inc; // Amount to bump next clause with.
- vec<double> activity; // A heuristic measurement of the activity of a variable.
- double var_inc; // Amount to bump next variable with.
- vec<vec<Clause*> > watches; // 'watches[lit]' is a list of constraints watching 'lit' (will go there if literal becomes true).
- vec<vec<XorClause*> > xorwatches; // 'xorwatches[var]' is a list of constraints watching var in XOR clauses.
- vec<lbool> assigns; // The current assignments
- vec<char> polarity; // The preferred polarity of each variable.
- vec<char> decision_var; // Declares if a variable is eligible for selection in the decision heuristic.
- vec<Lit> trail; // Assignment stack; stores all assigments made in the order they were made.
- vec<int32_t> trail_lim; // Separator indices for different decision levels in 'trail'.
- vec<Clause*> reason; // 'reason[var]' is the clause that implied the variables current value, or 'NULL' if none.
- vec<int32_t> level; // 'level[var]' contains the level at which the assignment was made.
- int qhead; // Head of queue (as index into the trail -- no more explicit propagation queue in MiniSat).
- int simpDB_assigns; // Number of top-level assignments since last execution of 'simplify()'.
- int64_t simpDB_props; // Remaining number of propagations that must be made before next execution of 'simplify()'.
- vec<Lit> assumptions; // Current set of assumptions provided to solve by the user.
- Heap<VarOrderLt> order_heap; // A priority queue of variables ordered with respect to the variable activity.
- double progress_estimate;// Set by 'search()'.
- bool remove_satisfied; // Indicates whether possibly inefficient linear scan for satisfied clauses should be performed in 'simplify'.
- MTRand mtrand; // random number generator
- Logger logger; // dynamic logging, statistics
- bool dynamic_behaviour_analysis; //should 'logger' be called whenever a propagation/conflict/decision is made?
- uint maxRestarts; // More than this number of restarts will not be performed
-
- // Temporaries (to reduce allocation overhead). Each variable is prefixed by the method in which it is
- // used, exept 'seen' wich is used in several places.
- //
- vec<char> seen;
- vec<Lit> analyze_stack;
- vec<Lit> analyze_toclear;
- vec<Lit> add_tmp;
-
- //Logging
- uint learnt_clause_group; //the group number of learnt clauses. Incremented at each added learnt clause
-
- // Main internal methods:
- //
- void insertVarOrder (Var x); // Insert a variable in the decision order priority queue.
- Lit pickBranchLit (int polarity_mode); // Return the next decision variable.
- void newDecisionLevel (); // Begins a new decision level.
- void uncheckedEnqueue (Lit p, Clause* from = NULL); // Enqueue a literal. Assumes value of literal is undefined.
- bool enqueue (Lit p, Clause* from = NULL); // Test if fact 'p' contradicts current state, enqueue otherwise.
- Clause* propagate (const bool xor_as_well = true); // Perform unit propagation. Returns possibly conflicting clause.
- Clause* propagate_xors (const Lit& p);
- void cancelUntil (int level); // Backtrack until a certain level.
- void analyze (Clause* confl, vec<Lit>& out_learnt, int& out_btlevel); // (bt = backtrack)
- void analyzeFinal (Lit p, vec<Lit>& out_conflict); // COULD THIS BE IMPLEMENTED BY THE ORDINARIY "analyze" BY SOME REASONABLE GENERALIZATION?
- bool litRedundant (Lit p, uint32_t abstract_levels); // (helper method for 'analyze()')
- lbool search (int nof_conflicts, int nof_learnts); // Search for a given number of conflicts.
- void reduceDB (); // Reduce the set of learnt clauses.
- template<class T>
- void removeSatisfied (vec<T*>& cs); // Shrink 'cs' to contain only non-satisfied clauses.
- void cleanClauses (vec<XorClause*>& cs);
- void cleanClauses (vec<Clause*>& cs); // Remove TRUE or FALSE variables from the xor clauses and remove the FALSE variables from the normal clauses
- llbool handle_conflict (vec<Lit>& learnt_clause, Clause* confl, int& conflictC);// Handles the conflict clause
- llbool new_decision (int& nof_conflicts, int& nof_learnts, int& conflictC); // Handles the case when all propagations have been made, and now a decision must be made
-
- // Maintaining Variable/Clause activity:
- //
- void varDecayActivity (); // Decay all variables with the specified factor. Implemented by increasing the 'bump' value instead.
- void varBumpActivity (Var v); // Increase a variable with the current 'bump' value.
- void claDecayActivity (); // Decay all clauses with the specified factor. Implemented by increasing the 'bump' value instead.
- void claBumpActivity (Clause& c); // Increase a clause with the current 'bump' value.
-
- // Operations on clauses:
- //
- void attachClause (XorClause& c);
- void attachClause (Clause& c); // Attach a clause to watcher lists.
- void detachClause (const XorClause& c);
- void detachClause (const Clause& c); // Detach a clause to watcher lists.
- template<class T>
- void removeClause(T& c); // Detach and free a clause.
- bool locked (const Clause& c) const; // Returns TRUE if a clause is a reason for some implication in the current state.
- bool satisfied (const XorClause& c) const; // Returns TRUE if the clause is satisfied in the current state
- bool satisfied (const Clause& c) const; // Returns TRUE if the clause is satisfied in the current state.
-
- // Misc:
- //
- int decisionLevel () const; // Gives the current decisionlevel.
- uint32_t abstractLevel (const Var& x) const; // Used to represent an abstraction of sets of decision levels.
- double progressEstimate () const; // DELETE THIS ?? IT'S NOT VERY USEFUL ...
-
- // Debug:
- void printLit (const Lit l) const;
- void printClause (const Clause& c) const;
- void printClause (const XorClause& c) const;
- void verifyModel ();
- void checkLiteralCount();
-};
-
-
-//=================================================================================================
-// Implementation of inline methods:
-
-
-inline void Solver::insertVarOrder(Var x)
-{
- if (!order_heap.inHeap(x) && decision_var[x]) order_heap.insert(x);
-}
-
-inline void Solver::varDecayActivity()
-{
- var_inc *= var_decay;
-}
-inline void Solver::varBumpActivity(Var v)
-{
- if ( (activity[v] += var_inc) > 1e100 ) {
- // Rescale:
- for (int i = 0; i < nVars(); i++)
- activity[i] *= 1e-100;
- var_inc *= 1e-100;
- }
-
- // Update order_heap with respect to new activity:
- if (order_heap.inHeap(v))
- order_heap.decrease(v);
-}
-
-inline void Solver::claDecayActivity()
-{
- cla_inc *= clause_decay;
-}
-inline void Solver::claBumpActivity (Clause& c)
-{
- if ( (c.activity() += cla_inc) > 1e20 ) {
- // Rescale:
- for (int i = 0; i < learnts.size(); i++)
- learnts[i]->activity() *= 1e-20;
- cla_inc *= 1e-20;
- }
-}
-
-inline bool Solver::enqueue (Lit p, Clause* from)
-{
- return value(p) != l_Undef ? value(p) != l_False : (uncheckedEnqueue(p, from), true);
-}
-inline bool Solver::locked (const Clause& c) const
-{
- return reason[c[0].var()] == &c && value(c[0]) == l_True;
-}
-inline void Solver::newDecisionLevel()
-{
- trail_lim.push(trail.size());
- #ifdef VERBOSE_DEBUG
- std::cout << "New decision level:" << trail_lim.size() << std::endl;
- #endif
-}
-inline int Solver::decisionLevel () const
-{
- return trail_lim.size();
-}
-inline uint32_t Solver::abstractLevel (const Var& x) const
-{
- return 1 << (level[x] & 31);
-}
-inline lbool Solver::value (const Var& x) const
-{
- return assigns[x];
-}
-inline lbool Solver::value (const Lit& p) const
-{
- return assigns[p.var()] ^ p.sign();
-}
-inline lbool Solver::modelValue (const Lit& p) const
-{
- return model[p.var()] ^ p.sign();
-}
-inline int Solver::nAssigns () const
-{
- return trail.size();
-}
-inline int Solver::nClauses () const
-{
- return clauses.size() + xorclauses.size();
-}
-inline int Solver::nLearnts () const
-{
- return learnts.size();
-}
-inline int Solver::nVars () const
-{
- return assigns.size();
-}
-inline void Solver::setPolarity (Var v, bool b)
-{
- polarity [v] = (char)b;
-}
-inline void Solver::setDecisionVar(Var v, bool b)
-{
- decision_var[v] = (char)b;
- if (b) {
- insertVarOrder(v);
- }
-}
-inline lbool Solver::solve ()
-{
- vec<Lit> tmp;
- return solve(tmp);
-}
-inline bool Solver::okay () const
-{
- return ok;
-}
-inline void Solver::setSeed (const uint32_t seed)
-{
- mtrand.seed(seed); // Set seed of the variable-selection and clause-permutation(if applicable)
-}
-inline void Solver::needStats()
-{
- dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate statistics
- logger.statistics_on = true;
-}
-inline void Solver::needProofGraph()
-{
- dynamic_behaviour_analysis = true; // Sets the solver and the logger up to generate proof graphs during solving
- logger.proof_graph_on = true;
-}
-inline void Solver::setVariableName(int var, const char* name)
-{
- while (var >= nVars()) newVar();
- logger.set_variable_name(var, name);
-} // Sets the varible 'var'-s name to 'name' in the logger
-inline void Solver::startClauseAdding()
-{
- if (dynamic_behaviour_analysis) logger.begin(); // Needs to be called before adding any clause
-}
-inline void Solver::endFirstSimplify()
-{
- if (dynamic_behaviour_analysis) logger.end(Logger::done_adding_clauses); // Needs to be called before adding any clause
-}
-inline void Solver::needRealUnknowns()
-{
- useRealUnknowns = true;
-}
-
-
-//=================================================================================================
-// Debug + etc:
-
-static inline void logLit(FILE* f, Lit l)
-{
- fprintf(f, "%sx%d", l.sign() ? "~" : "", l.var()+1);
-}
-
-static inline void logLits(FILE* f, const vec<Lit>& ls)
-{
- fprintf(f, "[ ");
- if (ls.size() > 0) {
- logLit(f, ls[0]);
- for (int i = 1; i < ls.size(); i++) {
- fprintf(f, ", ");
- logLit(f, ls[i]);
- }
- }
- fprintf(f, "] ");
-}
-
-static inline const char* showBool(bool b)
-{
- return b ? "true" : "false";
-}
-
-
-// Just like 'assert()' but expression will be evaluated in the release version as well.
-static inline void check(bool expr)
-{
- assert(expr);
-}
-
-};
-
-//=================================================================================================
-#endif
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-#ifndef SolverTypes_h
-#define SolverTypes_h
-
-#include <cassert>
-#include <stdint.h>
-#include "mtl/Alg.h"
-
-
-namespace MINISAT
-{
-//=================================================================================================
-// Variables, literals, lifted booleans, clauses:
-
-
-// NOTE! Variables are just integers. No abstraction here. They should be chosen from 0..N,
-// so that they can be used as array indices.
-
-typedef uint32_t Var;
-#define var_Undef (0xffffffffU >>1)
-
-class Lit
-{
- uint32_t x;
- explicit Lit(uint32_t i) : x(i) { };
-public:
- Lit() : x(2*var_Undef) {} // (lit_Undef)
- explicit Lit(Var var, bool sign) : x((var+var) + (int)sign) { }
-
- const uint32_t& toInt() const { // Guarantees small, positive integers suitable for array indexing.
- return x;
- }
- Lit operator~() const {
- return Lit(x ^ 1);
- }
- Lit operator^(const bool b) const {
- return Lit(x ^ b);
- }
- Lit& operator^=(const bool b) {
- x ^= b;
- return *this;
- }
- bool sign() const {
- return x & 1;
- }
- Var var() const {
- return x >> 1;
- }
- Lit unsign() const {
- return Lit(x & ~1);
- }
- bool operator==(const Lit& p) const {
- return x == p.x;
- }
- bool operator!= (const Lit& p) const {
- return x != p.x;
- }
- bool operator < (const Lit& p) const {
- return x < p.x; // '<' guarantees that p, ~p are adjacent in the ordering.
- }
-};
-
-const Lit lit_Undef(var_Undef, false); // }- Useful special constants.
-const Lit lit_Error(var_Undef, true ); // }
-
-//=================================================================================================
-// Lifted booleans:
-
-class llbool;
-
-class lbool
-{
- char value;
- explicit lbool(char v) : value(v) { }
-
-public:
- lbool() : value(0) { };
- inline char getchar() const {
- return value;
- }
- inline lbool(llbool b);
-
- inline const bool isUndef() const {
- return !value;
- }
- inline const bool isDef() const {
- return value;
- }
- inline const bool getBool() const {
- return (value+1) >> 1;
- }
- inline const bool operator==(lbool b) const {
- return value == b.value;
- }
- inline const bool operator!=(lbool b) const {
- return value != b.value;
- }
- lbool operator^(const bool b) const {
- return lbool(value - value*2*b);
- }
- //lbool operator ^ (const bool b) const { return b ? lbool(-value) : lbool(value); }
-
- friend lbool toLbool(const char v);
- friend lbool boolToLBool(const bool b);
- friend class llbool;
-};
-inline lbool toLbool(const char v)
-{
- return lbool(v);
-}
-inline lbool boolToLBool(const bool b)
-{
- return lbool(2*b-1);
-}
-
-const lbool l_True = toLbool( 1);
-const lbool l_False = toLbool(-1);
-const lbool l_Undef = toLbool( 0);
-
-
-class llbool
-{
- char value;
-
-public:
- llbool(): value(0) {};
- llbool(lbool v) :
- value(v.value) {};
- llbool(char a) :
- value(a) {}
-
- inline const bool operator!=(const llbool& v) const {
- return (v.value != value);
- }
-
- inline const bool operator==(const llbool& v) const {
- return (v.value == value);
- }
-
- friend class lbool;
-};
-const llbool l_Nothing = toLbool(2);
-const llbool l_Continue = toLbool(3);
-
-lbool::lbool(llbool b) : value(b.value) {};
-};
-
-#endif
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "clause.h"
-
-namespace MINISAT
-{
-
-Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, group, learnt);
- return real;
-}
-
-Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, group, learnt);
- return real;
-}
-
-#ifdef USE_GAUSS
-Clause* Clause_new(const mpz_class& ps, const vec<lbool>& assigns, const vector<uint>& col_to_var_original, const uint group, const bool learnt)
-{
- void* mem = malloc(sizeof(Clause) + sizeof(Lit)*(ps.size()));
- Clause* real= new (mem) Clause(ps, assigns, col_to_var_original, group, learnt);
- return real;
-}
-#endif
-}
+++ /dev/null
-/***********************************************************************************[SolverTypes.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-CryptoMiniSat -- Copyright (c) 2009 Mate Soos
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef __clause_h__
-#define __clause_h__
-
-#include <stdint.h>
-#include <cstdio>
-#include <vector>
-#include <sys/types.h>
-#include "mtl/Vec.h"
-#include "SolverTypes.h"
-
-namespace MINISAT
-{
-
-#ifndef uint
-#define uint unsigned int
-#endif
-
-using std::vector;
-
-
-//=================================================================================================
-// Clause -- a simple class for representing a clause:
-
-
-class Clause
-{
-public:
- const uint group;
-protected:
- uint32_t size_etc;
- float act;
- Lit data[0];
-
-public:
- Clause(const vec<Lit>& ps, const uint _group, const bool learnt) :
- group(_group) {
- size_etc = (ps.size() << 4) | (uint32_t)learnt ;
- for (int i = 0; i < ps.size(); i++) data[i] = ps[i];
- if (learnt) act = 0;
- }
-
- Clause(const vector<Lit>& ps, const uint _group, const bool learnt) :
- group(_group) {
- size_etc = (ps.size() << 4) | (uint32_t)learnt ;
- for (uint i = 0; i < ps.size(); i++) data[i] = ps[i];
- if (learnt) act = 0;
- }
-
- // -- use this function instead:
- friend Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt = false);
- friend Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt = false);
-
- uint size () const {
- return size_etc >> 4;
- }
- void shrink (uint i) {
- assert(i <= size());
- size_etc = (((size_etc >> 4) - i) << 4) | (size_etc & 15);
- }
- void pop () {
- shrink(1);
- }
- bool learnt () const {
- return size_etc & 1;
- }
- uint32_t mark () const {
- return (size_etc >> 1) & 3;
- }
- void mark (uint32_t m) {
- size_etc = (size_etc & ~6) | ((m & 3) << 1);
- }
-
- Lit& operator [] (uint32_t i) {
- return data[i];
- }
- const Lit& operator [] (uint32_t i) const {
- return data[i];
- }
-
- float& activity () {
- return act;
- }
-
- Lit* getData () {
- return data;
- }
- void print() {
- Clause& c = *this;
- printf("group: %d, size: %d, learnt:%d, lits:\"", c.group, c.size(), c.learnt());
- for (uint i = 0; i < c.size(); i++) {
- if (c[i].sign()) printf("-");
- printf("%d ", c[i].var());
- }
- printf("\"\n");
- }
-};
-
-class XorClause : public Clause
-{
-public:
- // NOTE: This constructor cannot be used directly (doesn't allocate enough memory).
- template<class V>
- XorClause(const V& ps, const bool _xor_clause_inverted, const uint _group, const bool learnt) :
- Clause(ps, _group, learnt) {
- size_etc |= (((uint32_t)_xor_clause_inverted) << 3);
- }
-
- // -- use this function instead:
- template<class V>
- friend XorClause* XorClause_new(const V& ps, const bool xor_clause_inverted, const uint group, const bool learnt = false) {
- void* mem = malloc(sizeof(XorClause) + sizeof(Lit)*(ps.size()));
- XorClause* real= new (mem) XorClause(ps, xor_clause_inverted, group, learnt);
- return real;
- }
-
- inline bool xor_clause_inverted() const {
- return size_etc & 8;
- }
- inline void invert (bool b) {
- size_etc ^= (uint32_t)b << 3;
- }
-
- void print() {
- Clause& c = *this;
- printf("group: %d, size: %d, learnt:%d, lits:\"", c.group, c.size(), c.learnt());
- for (uint i = 0; i < c.size();) {
- assert(!c[i].sign());
- printf("%d", c[i].var());
- i++;
- if (i < c.size()) printf(" + ");
- }
- printf("\"\n");
- }
-};
-
-Clause* Clause_new(const vec<Lit>& ps, const uint group, const bool learnt);
-Clause* Clause_new(const vector<Lit>& ps, const uint group, const bool learnt);
-};
-
-#endif
+++ /dev/null
-
-#include <stdio.h>
-#include <string.h>
-#include "fcopy.h"
-
-
-namespace MINISAT
-{
-#define BUFSZ 16000
-
-int FileCopy ( const char *src, const char *dst )
-{
- char *buf;
- FILE *fi;
- FILE *fo;
- unsigned amount;
- unsigned written;
- int result;
-
- buf = new char[BUFSZ];
-
- fi = fopen( src, "rb" );
- fo = fopen( dst, "wb" );
-
- result = COPY_OK;
- if ((fi == NULL) || (fo == NULL) ) {
- result = COPY_ERROR;
- if (fi != NULL) fclose(fi);
- if (fo != NULL) fclose(fo);
- }
-
- if (result == COPY_OK) {
- do {
- amount = fread( buf, sizeof(char), BUFSZ, fi );
- if (amount) {
- written = fwrite( buf, sizeof(char), amount, fo );
- if (written != amount)
- result = COPY_ERROR; // out of disk space or some other disk err?
- }
- } // when amount read is < BUFSZ, copy
- while ((result == COPY_OK) && (amount == BUFSZ));
- fclose(fi);
- fclose(fo);
- }
-
- delete[] buf;
-
- return(result);
-}
-
-};
+++ /dev/null
-#ifndef __FCOPY_H__
-#define __FCOPY_H__
-
-namespace MINISAT
-{
-
-#define COPY_ERROR -1
-#define COPY_OK 0
-
-int FileCopy( const char *src, const char *dst );
-
-};
-
-#endif
+++ /dev/null
-/*******************************************************************************************[Alg.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Alg_h
-#define Alg_h
-
-namespace MINISAT {
-
-//=================================================================================================
-// Useful functions on vectors
-
-
-#if 1
-template<class V, class T>
-static inline void remove(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++) ;
- assert(j < ts.size());
- for (; j < ts.size()-1; j++) ts[j] = ts[j+1];
- ts.pop();
-}
-#else
-template<class V, class T>
-static inline void remove(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++);
- assert(j < ts.size());
- ts[j] = ts.last();
- ts.pop();
-}
-#endif
-
-template<class V, class T>
-static inline bool find(V& ts, const T& t)
-{
- int j = 0;
- for (; j < ts.size() && ts[j] != t; j++) ;
- return j < ts.size();
-}
-
-};
-#endif
+++ /dev/null
-/******************************************************************************************[Heap.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef BasicHeap_h
-#define BasicHeap_h
-
-#include "Vec.h"
-
-namespace MINISAT {
-
-//=================================================================================================
-// A heap implementation with support for decrease/increase key.
-
-
-template<class Comp>
-class BasicHeap {
- Comp lt;
- vec<int> heap; // heap of ints
-
- // Index "traversal" functions
- static inline int left (int i) { return i*2+1; }
- static inline int right (int i) { return (i+1)*2; }
- static inline int parent(int i) { return (i-1) >> 1; }
-
- inline void percolateUp(int i)
- {
- int x = heap[i];
- while (i != 0 && lt(x, heap[parent(i)])){
- heap[i] = heap[parent(i)];
- i = parent(i);
- }
- heap [i] = x;
- }
-
-
- inline void percolateDown(int i)
- {
- int x = heap[i];
- while (left(i) < heap.size()){
- int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
- if (!lt(heap[child], x)) break;
- heap[i] = heap[child];
- i = child;
- }
- heap[i] = x;
- }
-
-
- bool heapProperty(int i) {
- return i >= heap.size()
- || ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
-
-
- public:
- BasicHeap(const C& c) : comp(c) { }
-
- int size () const { return heap.size(); }
- bool empty () const { return heap.size() == 0; }
- int operator[](int index) const { return heap[index+1]; }
- void clear (bool dealloc = false) { heap.clear(dealloc); }
- void insert (int n) { heap.push(n); percolateUp(heap.size()-1); }
-
-
- int removeMin() {
- int r = heap[0];
- heap[0] = heap.last();
- heap.pop();
- if (heap.size() > 1) percolateDown(0);
- return r;
- }
-
-
- // DEBUG: consistency checking
- bool heapProperty() {
- return heapProperty(1); }
-
-
- // COMPAT: should be removed
- int getmin () { return removeMin(); }
-};
-
-
-//=================================================================================================
-};
-#endif
+++ /dev/null
-/*******************************************************************************************[Vec.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef BoxedVec_h
-#define BoxedVec_h
-
-#include <cstdlib>
-#include <cassert>
-#include <new>
-
-namespace MINISAT {
-//=================================================================================================
-// Automatically resizable arrays
-//
-// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
-
-template<class T>
-class bvec {
-
- static inline int imin(int x, int y) {
- int mask = (x-y) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- static inline int imax(int x, int y) {
- int mask = (y-x) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- struct Vec_t {
- int sz;
- int cap;
- T data[0];
-
- static Vec_t* alloc(Vec_t* x, int size){
- x = (Vec_t*)realloc((void*)x, sizeof(Vec_t) + sizeof(T)*size);
- x->cap = size;
- return x;
- }
-
- };
-
- Vec_t* ref;
-
- static const int init_size = 2;
- static int nextSize (int current) { return (current * 3 + 1) >> 1; }
- static int fitSize (int needed) { int x; for (x = init_size; needed > x; x = nextSize(x)); return x; }
-
- void fill (int size) {
- assert(ref != NULL);
- for (T* i = ref->data; i < ref->data + size; i++)
- new (i) T();
- }
-
- void fill (int size, const T& pad) {
- assert(ref != NULL);
- for (T* i = ref->data; i < ref->data + size; i++)
- new (i) T(pad);
- }
-
- // Don't allow copying (error prone):
- altvec<T>& operator = (altvec<T>& other) { assert(0); }
- altvec (altvec<T>& other) { assert(0); }
-
-public:
- void clear (bool dealloc = false) {
- if (ref != NULL){
- for (int i = 0; i < ref->sz; i++)
- (*ref).data[i].~T();
-
- if (dealloc) {
- free(ref); ref = NULL;
- }else
- ref->sz = 0;
- }
- }
-
- // Constructors:
- altvec(void) : ref (NULL) { }
- altvec(int size) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size); ref->sz = size; }
- altvec(int size, const T& pad) : ref (Vec_t::alloc(NULL, fitSize(size))) { fill(size, pad); ref->sz = size; }
- ~altvec(void) { clear(true); }
-
- // Ownership of underlying array:
- operator T* (void) { return ref->data; } // (unsafe but convenient)
- operator const T* (void) const { return ref->data; }
-
- // Size operations:
- int size (void) const { return ref != NULL ? ref->sz : 0; }
-
- void pop (void) { assert(ref != NULL && ref->sz > 0); int last = --ref->sz; ref->data[last].~T(); }
- void push (const T& elem) {
- int size = ref != NULL ? ref->sz : 0;
- int cap = ref != NULL ? ref->cap : 0;
- if (size == cap){
- cap = cap != 0 ? nextSize(cap) : init_size;
- ref = Vec_t::alloc(ref, cap);
- }
- //new (&ref->data[size]) T(elem);
- ref->data[size] = elem;
- ref->sz = size+1;
- }
-
- void push () {
- int size = ref != NULL ? ref->sz : 0;
- int cap = ref != NULL ? ref->cap : 0;
- if (size == cap){
- cap = cap != 0 ? nextSize(cap) : init_size;
- ref = Vec_t::alloc(ref, cap);
- }
- new (&ref->data[size]) T();
- ref->sz = size+1;
- }
-
- void shrink (int nelems) { for (int i = 0; i < nelems; i++) pop(); }
- void shrink_(int nelems) { for (int i = 0; i < nelems; i++) pop(); }
- void growTo (int size) { while (this->size() < size) push(); }
- void growTo (int size, const T& pad) { while (this->size() < size) push(pad); }
- void capacity (int size) { growTo(size); }
-
- const T& last (void) const { return ref->data[ref->sz-1]; }
- T& last (void) { return ref->data[ref->sz-1]; }
-
- // Vector interface:
- const T& operator [] (int index) const { return ref->data[index]; }
- T& operator [] (int index) { return ref->data[index]; }
-
- void copyTo(altvec<T>& copy) const { copy.clear(); for (int i = 0; i < size(); i++) copy.push(ref->data[i]); }
- void moveTo(altvec<T>& dest) { dest.clear(true); dest.ref = ref; ref = NULL; }
-
-};
-
-
-};
-#endif
+++ /dev/null
-/******************************************************************************************[Heap.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Heap_h
-#define Heap_h
-
-#include "Vec.h"
-
-namespace MINISAT {
-//=================================================================================================
-// A heap implementation with support for decrease/increase key.
-
-
-template<class Comp>
-class Heap {
- Comp lt;
- vec<int> heap; // heap of ints
- vec<int> indices; // int -> index in heap
-
- // Index "traversal" functions
- static inline int left (int i) { return i*2+1; }
- static inline int right (int i) { return (i+1)*2; }
- static inline int parent(int i) { return (i-1) >> 1; }
-
-
- inline void percolateUp(int i)
- {
- int x = heap[i];
- while (i != 0 && lt(x, heap[parent(i)])){
- heap[i] = heap[parent(i)];
- indices[heap[i]] = i;
- i = parent(i);
- }
- heap [i] = x;
- indices[x] = i;
- }
-
-
- inline void percolateDown(int i)
- {
- int x = heap[i];
- while (left(i) < heap.size()){
- int child = right(i) < heap.size() && lt(heap[right(i)], heap[left(i)]) ? right(i) : left(i);
- if (!lt(heap[child], x)) break;
- heap[i] = heap[child];
- indices[heap[i]] = i;
- i = child;
- }
- heap [i] = x;
- indices[x] = i;
- }
-
-
- bool heapProperty (int i) const {
- return i >= heap.size()
- || ((i == 0 || !lt(heap[i], heap[parent(i)])) && heapProperty(left(i)) && heapProperty(right(i))); }
-
-
- public:
- Heap(const Comp& c) : lt(c) { }
-
- int size () const { return heap.size(); }
- bool empty () const { return heap.size() == 0; }
- bool inHeap (int n) const { return n < indices.size() && indices[n] >= 0; }
- int operator[](int index) const { assert(index < heap.size()); return heap[index]; }
-
- void decrease (int n) { assert(inHeap(n)); percolateUp(indices[n]); }
-
- // RENAME WHEN THE DEPRECATED INCREASE IS REMOVED.
- void increase_ (int n) { assert(inHeap(n)); percolateDown(indices[n]); }
-
-
- void insert(int n)
- {
- indices.growTo(n+1, -1);
- assert(!inHeap(n));
-
- indices[n] = heap.size();
- heap.push(n);
- percolateUp(indices[n]);
- }
-
-
- int removeMin()
- {
- int x = heap[0];
- heap[0] = heap.last();
- indices[heap[0]] = 0;
- indices[x] = -1;
- heap.pop();
- if (heap.size() > 1) percolateDown(0);
- return x;
- }
-
-
- void clear(bool dealloc = false)
- {
- for (int i = 0; i < heap.size(); i++)
- indices[heap[i]] = -1;
-#ifdef NDEBUG
- for (int i = 0; i < indices.size(); i++)
- assert(indices[i] == -1);
-#endif
- heap.clear(dealloc);
- }
-
-
- // Fool proof variant of insert/decrease/increase
- void update (int n)
- {
- if (!inHeap(n))
- insert(n);
- else {
- percolateUp(indices[n]);
- percolateDown(indices[n]);
- }
- }
-
-
- // Delete elements from the heap using a given filter function (-object).
- // *** this could probaly be replaced with a more general "buildHeap(vec<int>&)" method ***
- template <class F>
- void filter(const F& filt) {
- int i,j;
- for (i = j = 0; i < heap.size(); i++)
- if (filt(heap[i])){
- heap[j] = heap[i];
- indices[heap[i]] = j++;
- }else
- indices[heap[i]] = -1;
-
- heap.shrink(i - j);
- for (int i = heap.size() / 2 - 1; i >= 0; i--)
- percolateDown(i);
-
- assert(heapProperty());
- }
-
-
- // DEBUG: consistency checking
- bool heapProperty() const {
- return heapProperty(1); }
-
-
- // COMPAT: should be removed
- void setBounds (int n) { }
- void increase (int n) { decrease(n); }
- int getmin () { return removeMin(); }
-
-};
-
-
-//=================================================================================================
-};
-#endif
+++ /dev/null
-/*******************************************************************************************[Map.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Map_h
-#define Map_h
-
-#include <stdint.h>
-
-#include "Vec.h"
-
-namespace MINISAT {
-
-//=================================================================================================
-// Default hash/equals functions
-//
-
-template<class K> struct Hash { uint32_t operator()(const K& k) const { return hash(k); } };
-
-template<class K> struct Equal { bool operator()(const K& k1, const K& k2) const { return k1 == k2; } };
-
-template<class K> struct DeepHash { uint32_t operator()(const K* k) const { return hash(*k); } };
-template<class K> struct DeepEqual { bool operator()(const K* k1, const K* k2) const { return *k1 == *k2; } };
-
-//=================================================================================================
-// Some primes
-//
-
-static const int nprimes = 25;
-static const int primes [nprimes] = { 31, 73, 151, 313, 643, 1291, 2593, 5233, 10501, 21013, 42073, 84181, 168451, 337219, 674701, 1349473, 2699299, 5398891, 10798093, 21596719, 43193641, 86387383, 172775299, 345550609, 691101253 };
-
-//=================================================================================================
-// Hash table implementation of Maps
-//
-
-template<class K, class D, class H = Hash<K>, class E = Equal<K> >
-class Map {
- struct Pair { K key; D data; };
-
- H hash;
- E equals;
-
- vec<Pair>* table;
- int cap;
- int size;
-
- // Don't allow copying (error prone):
- Map<K,D,H,E>& operator = (Map<K,D,H,E>& other) { assert(0); return NULL; }
- Map (Map<K,D,H,E>& other) { assert(0); }
-
- int32_t index (const K& k) const { return hash(k) % cap; }
- void _insert (const K& k, const D& d) { table[index(k)].push(); table[index(k)].last().key = k; table[index(k)].last().data = d; }
- void rehash () {
- const vec<Pair>* old = table;
-
- int newsize = primes[0];
- for (int i = 1; newsize <= cap && i < nprimes; i++)
- newsize = primes[i];
-
- table = new vec<Pair>[newsize];
-
- for (int i = 0; i < cap; i++){
- for (int j = 0; j < old[i].size(); j++){
- _insert(old[i][j].key, old[i][j].data); }}
-
- delete [] old;
-
- cap = newsize;
- }
-
-
- public:
-
- Map () : table(NULL), cap(0), size(0) {}
- Map (const H& h, const E& e) : Map(), hash(h), equals(e) {}
- ~Map () { delete [] table; }
-
- void insert (const K& k, const D& d) { if (size+1 > cap / 2) rehash(); _insert(k, d); size++; }
-
- bool peek (const K& k, D& d) {
- if (size == 0) return false;
- const vec<Pair>& ps = table[index(k)];
- for (int i = 0; i < ps.size(); i++)
- if (equals(ps[i].key, k)){
- d = ps[i].data;
- return true; }
- return false;
- }
-
- void remove (const K& k) {
- assert(table != NULL);
- vec<Pair>& ps = table[index(k)];
- int j = 0;
- for (; j < ps.size() && !equals(ps[j].key, k); j++) ;
- assert(j < ps.size());
- ps[j] = ps.last();
- ps.pop();
- }
-
- void clear () {
- cap = size = 0;
- delete [] table;
- table = NULL;
- }
-};
-
-};
-#endif
+++ /dev/null
-/*****************************************************************************************[Queue.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Queue_h
-#define Queue_h
-
-#include "Vec.h"
-
-namespace MINISAT {
-//=================================================================================================
-
-
-template <class T>
-class Queue {
- vec<T> elems;
- int first;
-
-public:
- Queue(void) : first(0) { }
-
- void insert(T x) { elems.push(x); }
- T peek () const { return elems[first]; }
- void pop () { first++; }
-
- void clear(bool dealloc = false) { elems.clear(dealloc); first = 0; }
- int size(void) { return elems.size() - first; }
-
- //bool has(T x) { for (int i = first; i < elems.size(); i++) if (elems[i] == x) return true; return false; }
-
- const T& operator [] (int index) const { return elems[first + index]; }
-
-};
-
-//template<class T>
-//class Queue {
-// vec<T> buf;
-// int first;
-// int end;
-//
-//public:
-// typedef T Key;
-//
-// Queue() : buf(1), first(0), end(0) {}
-//
-// void clear () { buf.shrinkTo(1); first = end = 0; }
-// int size () { return (end >= first) ? end - first : end - first + buf.size(); }
-//
-// T peek () { assert(first != end); return buf[first]; }
-// void pop () { assert(first != end); first++; if (first == buf.size()) first = 0; }
-// void insert(T elem) { // INVARIANT: buf[end] is always unused
-// buf[end++] = elem;
-// if (end == buf.size()) end = 0;
-// if (first == end){ // Resize:
-// vec<T> tmp((buf.size()*3 + 1) >> 1);
-// //**/printf("queue alloc: %d elems (%.1f MB)\n", tmp.size(), tmp.size() * sizeof(T) / 1000000.0);
-// int i = 0;
-// for (int j = first; j < buf.size(); j++) tmp[i++] = buf[j];
-// for (int j = 0 ; j < end ; j++) tmp[i++] = buf[j];
-// first = 0;
-// end = buf.size();
-// tmp.moveTo(buf);
-// }
-// }
-//};
-
-//=================================================================================================
-};
-#endif
+++ /dev/null
-/******************************************************************************************[Sort.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Sort_h
-#define Sort_h
-
-#include "Vec.h"
-
-namespace MINISAT {
-
-//=================================================================================================
-// Some sorting algorithms for vec's
-
-
-template<class T>
-struct LessThan_default {
- bool operator () (T x, T y) { return x < y; }
-};
-
-
-template <class T, class LessThan>
-void selectionSort(T* array, int size, LessThan lt)
-{
- int i, j, best_i;
- T tmp;
-
- for (i = 0; i < size-1; i++){
- best_i = i;
- for (j = i+1; j < size; j++){
- if (lt(array[j], array[best_i]))
- best_i = j;
- }
- tmp = array[i]; array[i] = array[best_i]; array[best_i] = tmp;
- }
-}
-template <class T> static inline void selectionSort(T* array, int size) {
- selectionSort(array, size, LessThan_default<T>()); }
-
-template <class T, class LessThan>
-void sort(T* array, int size, LessThan lt)
-{
- if (size <= 15)
- selectionSort(array, size, lt);
-
- else{
- T pivot = array[size / 2];
- T tmp;
- int i = -1;
- int j = size;
-
- for(;;){
- do i++; while(lt(array[i], pivot));
- do j--; while(lt(pivot, array[j]));
-
- if (i >= j) break;
-
- tmp = array[i]; array[i] = array[j]; array[j] = tmp;
- }
-
- sort(array , i , lt);
- sort(&array[i], size-i, lt);
- }
-}
-template <class T> static inline void sort(T* array, int size) {
- sort(array, size, LessThan_default<T>()); }
-
-
-//=================================================================================================
-// For 'vec's:
-
-
-template <class T, class LessThan> void sort(vec<T>& v, LessThan lt) {
- sort((T*)v, v.size(), lt); }
-template <class T> void sort(vec<T>& v) {
- sort(v, LessThan_default<T>()); }
-
-
-//=================================================================================================
-};
-#endif
+++ /dev/null
-/*******************************************************************************************[Vec.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef Vec_h
-#define Vec_h
-
-#include <cstdlib>
-#include <cassert>
-#include <new>
-
-namespace MINISAT {
-//=================================================================================================
-// Automatically resizable arrays
-//
-// NOTE! Don't use this vector on datatypes that cannot be re-located in memory (with realloc)
-
-template<class T>
-class vec {
- T* data;
- int sz;
- int cap;
-
- void init(int size, const T& pad);
- void grow(int min_cap);
-
- // Don't allow copying (error prone):
- vec<T>& operator = (vec<T>& other) { assert(0); return *this; }
- vec (vec<T>& other) { assert(0); }
-
- static inline int imin(int x, int y) {
- int mask = (x-y) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
- static inline int imax(int x, int y) {
- int mask = (y-x) >> (sizeof(int)*8-1);
- return (x&mask) + (y&(~mask)); }
-
-public:
- // Types:
- typedef int Key;
- typedef T Datum;
-
- // Constructors:
- vec(void) : data(NULL) , sz(0) , cap(0) { }
- vec(int size) : data(NULL) , sz(0) , cap(0) { growTo(size); }
- vec(int size, const T& pad) : data(NULL) , sz(0) , cap(0) { growTo(size, pad); }
- vec(T* array, int size) : data(array), sz(size), cap(size) { } // (takes ownership of array -- will be deallocated with 'free()')
- ~vec(void) { clear(true); }
-
- // Ownership of underlying array:
- T* release (void) { T* ret = data; data = NULL; sz = 0; cap = 0; return ret; }
- operator T* (void) { return data; } // (unsafe but convenient)
- operator const T* (void) const { return data; }
-
- // Size operations:
- int size (void) const { return sz; }
- void shrink (int nelems) { assert(nelems <= sz); for (int i = 0; i < nelems; i++) sz--, data[sz].~T(); }
- void shrink_(int nelems) { assert(nelems <= sz); sz -= nelems; }
- void pop (void) { sz--, data[sz].~T(); }
- void growTo (int size);
- void growTo (int size, const T& pad);
- void clear (bool dealloc = false);
- void capacity (int size) { grow(size); }
-
- // Stack interface:
-#if 1
- void push (void) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(); sz++; }
- //void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } new (&data[sz]) T(elem); sz++; }
- void push (const T& elem) { if (sz == cap) { cap = imax(2, (cap*3+1)>>1); data = (T*)realloc(data, cap * sizeof(T)); } data[sz++] = elem; }
- void push_ (const T& elem) { assert(sz < cap); data[sz++] = elem; }
-#else
- void push (void) { if (sz == cap) grow(sz+1); new (&data[sz]) T() ; sz++; }
- void push (const T& elem) { if (sz == cap) grow(sz+1); new (&data[sz]) T(elem); sz++; }
-#endif
-
- const T& last (void) const { return data[sz-1]; }
- T& last (void) { return data[sz-1]; }
-
- // Vector interface:
- const T& operator [] (int index) const { return data[index]; }
- T& operator [] (int index) { return data[index]; }
-
-
- // Duplicatation (preferred instead):
- void copyTo(vec<T>& copy) const { copy.clear(); copy.growTo(sz); for (int i = 0; i < sz; i++) new (©[i]) T(data[i]); }
- void moveTo(vec<T>& dest) { dest.clear(true); dest.data = data; dest.sz = sz; dest.cap = cap; data = NULL; sz = 0; cap = 0; }
-};
-
-template<class T>
-void vec<T>::grow(int min_cap) {
- if (min_cap <= cap) return;
- if (cap == 0) cap = (min_cap >= 2) ? min_cap : 2;
- else do cap = (cap*3+1) >> 1; while (cap < min_cap);
- data = (T*)realloc(data, cap * sizeof(T)); }
-
-template<class T>
-void vec<T>::growTo(int size, const T& pad) {
- if (sz >= size) return;
- grow(size);
- for (int i = sz; i < size; i++) new (&data[i]) T(pad);
- sz = size; }
-
-template<class T>
-void vec<T>::growTo(int size) {
- if (sz >= size) return;
- grow(size);
- for (int i = sz; i < size; i++) new (&data[i]) T();
- sz = size; }
-
-template<class T>
-void vec<T>::clear(bool dealloc) {
- if (data != NULL){
- for (int i = 0; i < sz; i++) data[i].~T();
- sz = 0;
- if (dealloc) free(data), data = NULL, cap = 0; } }
-
-
-};
-#endif
+++ /dev/null
-##
-## Template makefile for Standard, Profile, Debug, Release, and Release-static versions
-##
-## eg: "make rs" for a statically linked release version.
-## "make d" for a debug version (no optimizations).
-## "make" for the standard version (optimized, but with debug information and assertions active)
-
-CSRCS ?= $(wildcard *.C)
-CHDRS ?= $(wildcard *.h)
-COBJS ?= $(addsuffix .o, $(basename $(CSRCS)))
-
-PCOBJS = $(addsuffix p, $(COBJS))
-DCOBJS = $(addsuffix d, $(COBJS))
-RCOBJS = $(addsuffix r, $(COBJS))
-
-EXEC ?= $(notdir $(shell pwd))
-LIB ?= $(EXEC)
-
-CXX ?= g++
-CFLAGS ?= -Wall
-LFLAGS ?= -Wall
-
-COPTIMIZE ?= -O3
-
-.PHONY : s p d r rs lib libd clean
-
-s: $(EXEC)
-p: $(EXEC)_profile
-d: $(EXEC)_debug
-r: $(EXEC)_release
-rs: $(EXEC)_static
-lib: lib$(LIB).a
-libd: lib$(LIB)d.a
-libp: lib$(LIB)p.a
-
-## Compile options
-%.o: CFLAGS +=$(COPTIMIZE) -ggdb -D DEBUG
-%.op: CFLAGS +=$(COPTIMIZE) -pg -ggdb -D NDEBUG -DEXT_HASH_MAP
-%.od: CFLAGS +=-O0 -ggdb -D DEBUG # -D INVARIANTS
-%.or: CFLAGS +=$(COPTIMIZE) -D NDEBUG
-
-## Link options
-$(EXEC): LFLAGS := -ggdb $(LFLAGS)
-$(EXEC)_profile: LFLAGS := -ggdb -pg $(LFLAGS)
-$(EXEC)_debug: LFLAGS := -ggdb $(LFLAGS)
-$(EXEC)_release: LFLAGS := $(LFLAGS)
-$(EXEC)_static: LFLAGS := --static $(LFLAGS)
-
-## Dependencies
-$(EXEC): $(COBJS)
-$(EXEC)_profile: $(PCOBJS)
-$(EXEC)_debug: $(DCOBJS)
-$(EXEC)_release: $(RCOBJS)
-$(EXEC)_static: $(RCOBJS)
-
-lib$(LIB).a: $(filter-out Main.or, $(RCOBJS))
-lib$(LIB)d.a: $(filter-out Main.od, $(DCOBJS))
-lib$(LIB)p.a: $(filter-out Main.op, $(PCOBJS))
-
-
-## Build rule
-%.o %.op %.od %.or: %.C
- @echo Compiling: "$@ ( $< )"
- $(CXX) $(CFLAGS) -c -o $@ $<
-
-## Linking rules (standard/profile/debug/release)
-$(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static:
- @echo Linking: "$@ ( $^ )"
- @$(CXX) $^ $(LFLAGS) -o $@
-
-## Library rule
-lib$(LIB).a lib$(LIB)d.a lib$(LIB)p.a:
- @echo Library: "$@ ( $^ )"
- @rm -f $@
- @ar cq $@ $^
-
-## Clean rule
-clean:
- @rm -f *~ $(EXEC) $(EXEC)_profile $(EXEC)_debug $(EXEC)_release $(EXEC)_static \
- $(COBJS) $(PCOBJS) $(DCOBJS) $(RCOBJS) *.core depend.mk depend.mak lib$(LIB).a \
- lib$(LIB)d.a lib$(LIB)p.a
-
-## Make dependencies
-depend.mk: $(CSRCS) $(CHDRS)
- @echo Making dependencies ...
- @$(CXX) $(CFLAGS) -MM $(CSRCS) > depend.mk
- @cp depend.mk /tmp/depend.mk.tmp
- @sed "s/o:/op:/" /tmp/depend.mk.tmp >> depend.mk
- @sed "s/o:/od:/" /tmp/depend.mk.tmp >> depend.mk
- @sed "s/o:/or:/" /tmp/depend.mk.tmp >> depend.mk
- @rm /tmp/depend.mk.tmp
-
--include depend.mk
+++ /dev/null
-#ifndef SAT_H_
-#define SAT_H_
-
-#ifdef CRYPTOMINISAT
-#include "cryptominisat/Solver.h"
-#include "cryptominisat/SolverTypes.h"
-#else
-#include "core/Solver.h"
-#include "core/SolverTypes.h"
-//#include "simp/SimpSolver.h"
-//#include "unsound/UnsoundSimpSolver.h"
-#endif
-
-#endif
+++ /dev/null
-include ../../../scripts/Makefile.common
-MTL = ../mtl
-CORE = ../core
-CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
-EXEC = minisat
-CFLAGS = -I$(MTL) -I$(CORE) -DEXT_HASH_MAP -Wall -ffloat-store $(CFLAGS_M32)
-LFLAGS = -lz
-
-CSRCS = $(wildcard *.C)
-COBJS = $(addsuffix .o, $(basename $(CSRCS))) $(CORE)/Solver.o
-
-include ../mtl/template.mk
-all:
- ranlib libminisat.a
- cp *.or ../
- cp libminisat.a ../
+++ /dev/null
-/************************************************************************************[SimpSolver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include "Sort.h"
-#include "SimpSolver.h"
-
-namespace MINISAT {
-
-//=================================================================================================
-// Constructor/Destructor:
-
-
-SimpSolver::SimpSolver() :
- grow (0)
- , asymm_mode (false)
- , redundancy_check (false)
- , merges (0)
- , asymm_lits (0)
- , remembered_clauses (0)
- , elimorder (1)
- , use_simplification (true)
- , elim_heap (ElimLt(n_occ))
- , bwdsub_assigns (0)
-{
- vec<Lit> dummy(1,lit_Undef);
- bwdsub_tmpunit = Clause_new(dummy);
- remove_satisfied = false;
-}
-
-
-SimpSolver::~SimpSolver()
-{
- free(bwdsub_tmpunit);
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++)
- free(elimtable[i].eliminated[j]);
-}
-
-
-Var SimpSolver::newVar(bool sign, bool dvar) {
- Var v = Solver::newVar(sign, dvar);
-
- if (use_simplification){
- n_occ .push(0);
- n_occ .push(0);
- occurs .push();
- frozen .push((char)false);
- touched .push(0);
- elim_heap.insert(v);
- elimtable.push();
- }
- return v; }
-
-
-
-bool SimpSolver::solve(const vec<Lit>& assumps, bool do_simp, bool turn_off_simp) {
- vec<Var> extra_frozen;
- bool result = true;
-
- do_simp &= use_simplification;
-
- if (do_simp){
- // Assumptions must be temporarily frozen to run variable elimination:
- for (int i = 0; i < assumps.size(); i++){
- Var v = var(assumps[i]);
-
- // If an assumption has been eliminated, remember it.
- if (isEliminated(v))
- remember(v);
-
- if (!frozen[v]){
- // Freeze and store.
- setFrozen(v, true);
- extra_frozen.push(v);
- } }
-
- result = eliminate(turn_off_simp);
- }
-
- if (result)
- result = Solver::solve(assumps);
-
- if (result) {
- extendModel();
-#ifndef NDEBUG
- verifyModel();
-#endif
- }
-
- if (do_simp)
- // Unfreeze the assumptions that were frozen:
- for (int i = 0; i < extra_frozen.size(); i++)
- setFrozen(extra_frozen[i], false);
-
- return result;
-}
-
-
-
-bool SimpSolver::addClause(vec<Lit>& ps)
-{
- for (int i = 0; i < ps.size(); i++)
- if (isEliminated(var(ps[i])))
- remember(var(ps[i]));
-
- int nclauses = clauses.size();
-
- if (redundancy_check && implied(ps))
- return true;
-
- if (!Solver::addClause(ps))
- return false;
-
- if (use_simplification && clauses.size() == nclauses + 1){
- Clause& c = *clauses.last();
-
- subsumption_queue.insert(&c);
-
- for (int i = 0; i < c.size(); i++){
- assert(occurs.size() > var(c[i]));
- assert(!find(occurs[var(c[i])], &c));
-
- occurs[var(c[i])].push(&c);
- n_occ[toInt(c[i])]++;
- touched[var(c[i])] = 1;
- assert(elimtable[var(c[i])].order == 0);
- if (elim_heap.inHeap(var(c[i])))
- elim_heap.increase_(var(c[i]));
- }
- }
-
- return true;
-}
-
-
-void SimpSolver::removeClause(Clause& c)
-{
- assert(!c.learnt());
-
- if (use_simplification)
- for (int i = 0; i < c.size(); i++){
- n_occ[toInt(c[i])]--;
- updateElimHeap(var(c[i]));
- }
-
- detachClause(c);
- c.mark(1);
-}
-
-
-bool SimpSolver::strengthenClause(Clause& c, Lit l)
-{
- assert(decisionLevel() == 0);
- assert(c.mark() == 0);
- assert(!c.learnt());
- assert(find(watches[toInt(~c[0])], &c));
- assert(find(watches[toInt(~c[1])], &c));
-
- // FIX: this is too inefficient but would be nice to have (properly implemented)
- // if (!find(subsumption_queue, &c))
- subsumption_queue.insert(&c);
-
- // If l is watched, delete it from watcher list and watch a new literal
- if (c[0] == l || c[1] == l){
- Lit other = c[0] == l ? c[1] : c[0];
- if (c.size() == 2){
- removeClause(c);
- c.strengthen(l);
- }else{
- c.strengthen(l);
- remove(watches[toInt(~l)], &c);
-
- // Add a watch for the correct literal
- watches[toInt(~(c[1] == other ? c[0] : c[1]))].push(&c);
-
- // !! this version assumes that remove does not change the order !!
- //watches[toInt(~c[1])].push(&c);
- clauses_literals -= 1;
- }
- }
- else{
- c.strengthen(l);
- clauses_literals -= 1;
- }
-
- // if subsumption-indexing is active perform the necessary updates
- if (use_simplification){
- remove(occurs[var(l)], &c);
- n_occ[toInt(l)]--;
- updateElimHeap(var(l));
- }
-
- return c.size() == 1 ? enqueue(c[0]) && propagate() == NULL : true;
-}
-
-
-// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
-bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
-{
- merges++;
- out_clause.clear();
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(ps[j]) == var(qs[i]))
- if (ps[j] == ~qs[i])
- return false;
- else
- goto next;
- out_clause.push(qs[i]);
- }
- next:;
- }
-
- for (int i = 0; i < ps.size(); i++)
- if (var(ps[i]) != v)
- out_clause.push(ps[i]);
-
- return true;
-}
-
-
-// Returns FALSE if clause is always satisfied.
-bool SimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v)
-{
- merges++;
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
- const Lit* __ps = (const Lit*)ps;
- const Lit* __qs = (const Lit*)qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(__qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(__ps[j]) == var(__qs[i]))
- if (__ps[j] == ~__qs[i])
- return false;
- else
- goto next;
- }
- next:;
- }
-
- return true;
-}
-
-
-void SimpSolver::gatherTouchedClauses()
-{
- //fprintf(stderr, "Gathering clauses for backwards subsumption\n");
- int ntouched = 0;
- for (int i = 0; i < touched.size(); i++)
- if (touched[i]){
- const vec<Clause*>& cs = getOccurs(i);
- ntouched++;
- for (int j = 0; j < cs.size(); j++)
- if (cs[j]->mark() == 0){
- subsumption_queue.insert(cs[j]);
- cs[j]->mark(2);
- }
- touched[i] = 0;
- }
-
- //fprintf(stderr, "Touched variables %d of %d yields %d clauses to check\n", ntouched, touched.size(), clauses.size());
- for (int i = 0; i < subsumption_queue.size(); i++)
- subsumption_queue[i]->mark(0);
-}
-
-
-bool SimpSolver::implied(const vec<Lit>& c)
-{
- assert(decisionLevel() == 0);
-
- trail_lim.push(trail.size());
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True){
- cancelUntil(0);
- return false;
- }else if (value(c[i]) != l_False){
- assert(value(c[i]) == l_Undef);
- uncheckedEnqueue(~c[i]);
- }
-
- bool result = propagate() != NULL;
- cancelUntil(0);
- return result;
-}
-
-
-// Backward subsumption + backward subsumption resolution
-bool SimpSolver::backwardSubsumptionCheck(bool verbose)
-{
- int cnt = 0;
- int subsumed = 0;
- int deleted_literals = 0;
- assert(decisionLevel() == 0);
-
- while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
-
- // Check top-level assignments by creating a dummy clause and placing it in the queue:
- if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
- Lit l = trail[bwdsub_assigns++];
- (*bwdsub_tmpunit)[0] = l;
- bwdsub_tmpunit->calcAbstraction();
- assert(bwdsub_tmpunit->mark() == 0);
- subsumption_queue.insert(bwdsub_tmpunit); }
-
- Clause& c = *subsumption_queue.peek(); subsumption_queue.pop();
-
- if (c.mark()) continue;
-
- if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
- reportf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
-
- assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
-
- // Find best variable to scan:
- Var best = var(c[0]);
- for (int i = 1; i < c.size(); i++)
- if (occurs[var(c[i])].size() < occurs[best].size())
- best = var(c[i]);
-
- // Search all candidates:
- vec<Clause*>& _cs = getOccurs(best);
- Clause** cs = (Clause**)_cs;
-
- for (int j = 0; j < _cs.size(); j++)
- if (c.mark())
- break;
- else if (!cs[j]->mark() && cs[j] != &c){
- Lit l = c.subsumes(*cs[j]);
-
- if (l == lit_Undef)
- subsumed++, removeClause(*cs[j]);
- else if (l != lit_Error){
- deleted_literals++;
-
- if (!strengthenClause(*cs[j], ~l))
- return false;
-
- // Did current candidate get deleted from cs? Then check candidate at index j again:
- if (var(l) == best)
- j--;
- }
- }
- }
-
- return true;
-}
-
-
-bool SimpSolver::asymm(Var v, Clause& c)
-{
- assert(decisionLevel() == 0);
-
- if (c.mark() || satisfied(c)) return true;
-
- trail_lim.push(trail.size());
- Lit l = lit_Undef;
- for (int i = 0; i < c.size(); i++)
- if (var(c[i]) != v && value(c[i]) != l_False)
- uncheckedEnqueue(~c[i]);
- else
- l = c[i];
-
- if (propagate() != NULL){
- cancelUntil(0);
- asymm_lits++;
- if (!strengthenClause(c, l))
- return false;
- }else
- cancelUntil(0);
-
- return true;
-}
-
-
-bool SimpSolver::asymmVar(Var v)
-{
- assert(!frozen[v]);
- assert(use_simplification);
-
- vec<Clause*> pos, neg;
- const vec<Clause*>& cls = getOccurs(v);
-
- if (value(v) != l_Undef || cls.size() == 0)
- return true;
-
- for (int i = 0; i < cls.size(); i++)
- if (!asymm(v, *cls[i]))
- return false;
-
- return backwardSubsumptionCheck();
-}
-
-
-void SimpSolver::verifyModel()
-{
- bool failed = false;
- int cnt = 0;
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- if (elimtable[i].order > 0)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++){
- cnt++;
- Clause& c = *elimtable[i].eliminated[j];
- for (int k = 0; k < c.size(); k++)
- if (modelValue(c[k]) == l_True)
- goto next;
-
- reportf("unsatisfied clause: ");
- printClause(*elimtable[i].eliminated[j]);
- reportf("\n");
- failed = true;
- next:;
- }
-
- assert(!failed);
- reportf("Verified %d eliminated clauses.\n", cnt);
-}
-
-
-bool SimpSolver::eliminateVar(Var v, bool fail)
-{
- if (!fail && asymm_mode && !asymmVar(v)) return false;
-
- const vec<Clause*>& cls = getOccurs(v);
-
-// if (value(v) != l_Undef || cls.size() == 0) return true;
- if (value(v) != l_Undef) return true;
-
- // Split the occurrences into positive and negative:
- vec<Clause*> pos, neg;
- for (int i = 0; i < cls.size(); i++)
- (find(*cls[i], Lit(v)) ? pos : neg).push(cls[i]);
-
- // Check if number of clauses decreases:
- int cnt = 0;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v) && ++cnt > cls.size() + grow)
- return true;
-
- // Delete and store old clauses:
- setDecisionVar(v, false);
- elimtable[v].order = elimorder++;
- assert(elimtable[v].eliminated.size() == 0);
- for (int i = 0; i < cls.size(); i++){
- elimtable[v].eliminated.push(Clause_new(*cls[i]));
- removeClause(*cls[i]); }
-
- // Produce clauses in cross product:
- int top = clauses.size();
- vec<Lit> resolvent;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v, resolvent) && !addClause(resolvent))
- return false;
-
- // DEBUG: For checking that a clause set is saturated with respect to variable elimination.
- // If the clause set is expected to be saturated at this point, this constitutes an
- // error.
- if (fail){
- reportf("eliminated var %d, %d <= %d\n", v+1, cnt, cls.size());
- reportf("previous clauses:\n");
- for (int i = 0; i < cls.size(); i++){
- printClause(*cls[i]); reportf("\n"); }
- reportf("new clauses:\n");
- for (int i = top; i < clauses.size(); i++){
- printClause(*clauses[i]); reportf("\n"); }
- assert(0); }
-
- return backwardSubsumptionCheck();
-}
-
-
-void SimpSolver::remember(Var v)
-{
- assert(decisionLevel() == 0);
- assert(isEliminated(v));
-
- vec<Lit> clause;
-
- // Re-activate variable:
- elimtable[v].order = 0;
- setDecisionVar(v, true); // Not good if the variable wasn't a decision variable before. Not sure how to fix this right now.
-
- if (use_simplification)
- updateElimHeap(v);
-
- // Reintroduce all old clauses which may implicitly remember other clauses:
- for (int i = 0; i < elimtable[v].eliminated.size(); i++){
- Clause& c = *elimtable[v].eliminated[i];
- clause.clear();
- for (int j = 0; j < c.size(); j++)
- clause.push(c[j]);
-
- remembered_clauses++;
- check(addClause(clause));
- free(&c);
- }
-
- elimtable[v].eliminated.clear();
-}
-
-
-void SimpSolver::extendModel()
-{
- vec<Var> vs;
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int v = 0; v < elimtable.size(); v++)
- if (elimtable[v].order > 0)
- vs.push(v);
-
- sort(vs, ElimOrderLt(elimtable));
-
- for (int i = 0; i < vs.size(); i++){
- Var v = vs[i];
- Lit l = lit_Undef;
-
- for (int j = 0; j < elimtable[v].eliminated.size(); j++){
- Clause& c = *elimtable[v].eliminated[j];
-
- for (int k = 0; k < c.size(); k++)
- if (var(c[k]) == v)
- l = c[k];
- else if (modelValue(c[k]) != l_False)
- goto next;
-
- assert(l != lit_Undef);
- model[v] = lbool(!sign(l));
- break;
-
- next:;
- }
-
- if (model[v] == l_Undef)
- model[v] = l_True;
- }
-}
-
-
-bool SimpSolver::eliminate(bool turn_off_elim)
-{
- if (!ok || !use_simplification)
- return ok;
-
- // Main simplification loop:
- //assert(subsumption_queue.size() == 0);
- //gatherTouchedClauses();
- while (subsumption_queue.size() > 0 || elim_heap.size() > 0){
-
- //fprintf(stderr, "subsumption phase: (%d)\n", subsumption_queue.size());
- if (!backwardSubsumptionCheck(true))
- return false;
-
- //fprintf(stderr, "elimination phase:\n (%d)", elim_heap.size());
- for (int cnt = 0; !elim_heap.empty(); cnt++){
- Var elim = elim_heap.removeMin();
-
- if (verbosity >= 2 && cnt % 100 == 0)
- reportf("elimination left: %10d\r", elim_heap.size());
-
- if (!frozen[elim] && !eliminateVar(elim))
- return false;
- }
-
- assert(subsumption_queue.size() == 0);
- gatherTouchedClauses();
- }
-
- // Cleanup:
- cleanUpClauses();
- order_heap.filter(VarFilter(*this));
-
-#ifdef INVARIANTS
- // Check that no more subsumption is possible:
- reportf("Checking that no more subsumption is possible\n");
- for (int i = 0; i < clauses.size(); i++){
- if (i % 1000 == 0)
- reportf("left %10d\r", clauses.size() - i);
-
- assert(clauses[i]->mark() == 0);
- for (int j = 0; j < i; j++)
- assert(clauses[i]->subsumes(*clauses[j]) == lit_Error);
- }
- reportf("done.\n");
-
- // Check that no more elimination is possible:
- reportf("Checking that no more elimination is possible\n");
- for (int i = 0; i < nVars(); i++)
- if (!frozen[i]) eliminateVar(i, true);
- reportf("done.\n");
- checkLiteralCount();
-#endif
-
- // If no more simplification is needed, free all simplification-related data structures:
- if (turn_off_elim){
- use_simplification = false;
- touched.clear(true);
- occurs.clear(true);
- n_occ.clear(true);
- subsumption_queue.clear(true);
- elim_heap.clear(true);
- remove_satisfied = true;
- }
-
-
- return true;
-}
-
-
-void SimpSolver::cleanUpClauses()
-{
- int i , j;
- vec<Var> dirty;
- for (i = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1){
- Clause& c = *clauses[i];
- for (int k = 0; k < c.size(); k++)
- if (!seen[var(c[k])]){
- seen[var(c[k])] = 1;
- dirty.push(var(c[k]));
- } }
-
- for (i = 0; i < dirty.size(); i++){
- cleanOcc(dirty[i]);
- seen[dirty[i]] = 0; }
-
- for (i = j = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1)
- free(clauses[i]);
- else
- clauses[j++] = clauses[i];
- clauses.shrink(i - j);
-}
-
-
-//=================================================================================================
-// Convert to DIMACS:
-
-
-void SimpSolver::toDimacs(FILE* f, Clause& c)
-{
- if (satisfied(c)) return;
-
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) != l_False)
- fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", var(c[i])+1);
- fprintf(f, "0\n");
-}
-
-
-void SimpSolver::toDimacs(const char* file)
-{
- assert(decisionLevel() == 0);
- FILE* f = fopen(file, "wr");
- if (f != NULL){
-
- // Cannot use removeClauses here because it is not safe
- // to deallocate them at this point. Could be improved.
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- if (!satisfied(*clauses[i]))
- cnt++;
-
- fprintf(f, "p cnf %d %d\n", nVars(), cnt);
-
- for (int i = 0; i < clauses.size(); i++)
- toDimacs(f, *clauses[i]);
-
- fprintf(stderr, "Wrote %d clauses...\n", clauses.size());
- }else
- fprintf(stderr, "could not open file %s\n", file);
-}
-
-};
+++ /dev/null
-/************************************************************************************[SimpSolver.h]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
-associated documentation files (the "Software"), to deal in the Software without restriction,
-including without limitation the rights to use, copy, modify, merge, publish, distribute,
-sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is
-furnished to do so, subject to the following conditions:
-
-The above copyright notice and this permission notice shall be included in all copies or
-substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT
-NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
-DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT
-OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#ifndef SimpSolver_h
-#define SimpSolver_h
-
-#include <ctime>
-#include <cstdio>
-
-#include "../mtl/Queue.h"
-#include "../core/Solver.h"
-
-namespace MINISAT {
-
-/*************************************************************************************/
-/* #ifdef _MSC_VER */
-/* #include <ctime> */
-
-/* static inline double cpuTime(void) { */
-/* return (double)clock() / CLOCKS_PER_SEC; } */
-/* #else */
-
-/* #include <sys/time.h> */
-/* #include <sys/resource.h> */
-/* #include <unistd.h> */
-
-/* static inline double cpuTime(void) { */
-/* struct rusage ru; */
-/* getrusage(RUSAGE_SELF, &ru); */
-/* return (double)ru.ru_utime.tv_sec + (double)ru.ru_utime.tv_usec / 1000000; } */
-/* #endif */
-
-
-/* #if defined(__linux__) */
-/* static inline int memReadStat(int field) */
-/* { */
-/* char name[256]; */
-/* pid_t pid = getpid(); */
-/* sprintf(name, "/proc/%d/statm", pid); */
-/* FILE* in = fopen(name, "rb"); */
-/* if (in == NULL) return 0; */
-/* int value; */
-/* for (; field >= 0; field--) */
-/* fscanf(in, "%d", &value); */
-/* fclose(in); */
-/* return value; */
-/* } */
-/* static inline uint64_t memUsed() { return (uint64_t)memReadStat(0) * (uint64_t)getpagesize(); } */
-
-
-/* #elif defined(__FreeBSD__) */
-/* static inline uint64_t memUsed(void) { */
-/* struct rusage ru; */
-/* getrusage(RUSAGE_SELF, &ru); */
-/* return ru.ru_maxrss*1024; } */
-
-
-/* #else */
-/* static inline uint64_t memUsed() { return 0; } */
-/* #endif */
-
-#if defined(__linux__)
-#include <fpu_control.h>
-#endif
-
-class SimpSolver : public Solver {
- public:
- // Constructor/Destructor:
- //
- SimpSolver();
- ~SimpSolver();
-
- // Problem specification:
- //
- Var newVar (bool polarity = true, bool dvar = true);
- bool addClause (vec<Lit>& ps);
-
- // Variable mode:
- //
- void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
-
- // Solving:
- //
- bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
- bool solve (bool do_simp = true, bool turn_off_simp = false);
- bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
-
- // Generate a (possibly simplified) DIMACS file:
- //
- void toDimacs (const char* file);
-
- // Mode of operation:
- //
- int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
- bool asymm_mode; // Shrink clauses by asymmetric branching.
- bool redundancy_check; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
-
- // Statistics:
- //
- int merges;
- int asymm_lits;
- int remembered_clauses;
-
-// protected:
- public:
-
- // Helper structures:
- //
- struct ElimData {
- int order; // 0 means not eliminated, >0 gives an index in the elimination order
- vec<Clause*> eliminated;
- ElimData() : order(0) {} };
-
- struct ElimOrderLt {
- const vec<ElimData>& elimtable;
- ElimOrderLt(const vec<ElimData>& et) : elimtable(et) {}
- bool operator()(Var x, Var y) { return elimtable[x].order > elimtable[y].order; } };
-
- struct ElimLt {
- const vec<int>& n_occ;
- ElimLt(const vec<int>& no) : n_occ(no) {}
- int cost (Var x) const { return n_occ[toInt(Lit(x))] * n_occ[toInt(~Lit(x))]; }
- bool operator()(Var x, Var y) const { return cost(x) < cost(y); } };
-
-
- // Solver state:
- //
- int elimorder;
- bool use_simplification;
- vec<ElimData> elimtable;
- vec<char> touched;
- vec<vec<Clause*> > occurs;
- vec<int> n_occ;
- Heap<ElimLt> elim_heap;
- Queue<Clause*> subsumption_queue;
- vec<char> frozen;
- int bwdsub_assigns;
-
- // Temporaries:
- //
- Clause* bwdsub_tmpunit;
-
- // Main internal methods:
- //
- bool asymm (Var v, Clause& c);
- bool asymmVar (Var v);
- void updateElimHeap (Var v);
- void cleanOcc (Var v);
- vec<Clause*>& getOccurs (Var x);
- void gatherTouchedClauses ();
- bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
- bool merge (const Clause& _ps, const Clause& _qs, Var v);
- bool backwardSubsumptionCheck (bool verbose = false);
- bool eliminateVar (Var v, bool fail = false);
- void remember (Var v);
- void extendModel ();
- void verifyModel ();
-
- void removeClause (Clause& c);
- bool strengthenClause (Clause& c, Lit l);
- void cleanUpClauses ();
- bool implied (const vec<Lit>& c);
- void toDimacs (FILE* f, Clause& c);
- bool isEliminated (Var v) const;
-
-};
-
-
-//=================================================================================================
-// Implementation of inline methods:
-
-inline void SimpSolver::updateElimHeap(Var v) {
- if (elimtable[v].order == 0)
- elim_heap.update(v); }
-
-inline void SimpSolver::cleanOcc(Var v) {
- assert(use_simplification);
- Clause **begin = (Clause**)occurs[v];
- Clause **end = begin + occurs[v].size();
- Clause **i, **j;
- for (i = begin, j = end; i < j; i++)
- if ((*i)->mark() == 1){
- *i = *(--j);
- i--;
- }
- //occurs[v].shrink_(end - j); // This seems slower. Why?!
- occurs[v].shrink(end - j);
-}
-
-inline vec<Clause*>& SimpSolver::getOccurs(Var x) {
- cleanOcc(x); return occurs[x]; }
-
-inline bool SimpSolver::isEliminated (Var v) const { return v < elimtable.size() && elimtable[v].order != 0; }
-inline void SimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (b) { updateElimHeap(v); } }
-inline bool SimpSolver::solve (bool do_simp, bool turn_off_simp) { vec<Lit> tmp; return solve(tmp, do_simp, turn_off_simp); }
-
-//=================================================================================================
-};
-#endif
+++ /dev/null
-include ../../../scripts/Makefile.common
-MTL = ../mtl
-CORE = ../core
-CHDRS = $(wildcard *.h) $(wildcard $(MTL)/*.h)
-EXEC = minisat
-CFLAGS = -I$(MTL) -I$(CORE) -Wall -ffloat-store $(CFLAGS_M32)
-LFLAGS = -lz
-
-CSRCS = $(wildcard *.C)
-COBJS = $(addsuffix .o, $(basename $(CSRCS))) $(CORE)/Solver.o
-
-
-include ../mtl/template.mk
-all:
- ranlib libminisat.a
- cp *.or ../
- cp libminisat.a ../
\ No newline at end of file
+++ /dev/null
-/************************************************************************************[UnsoundSimpSolver.C]
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining
-a copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-**************************************************************************************************/
-
-#include <math.h>
-#include "Sort.h"
-#include "UnsoundSimpSolver.h"
-
-
-namespace MINISAT {
-
-//=================================================================================================
-// Constructor/Destructor:
-
-
-UnsoundSimpSolver::UnsoundSimpSolver() :
- grow (0)
- , asymm_mode (false)
- , redundancy_check (false)
- , merges (0)
- , asymm_lits (0)
- , remembered_clauses (0)
- , elimorder (1)
- , use_simplification (true)
- , elim_heap (ElimLt(n_occ))
- , bwdsub_assigns (0)
-{
- vec<Lit> dummy(1,lit_Undef);
- bwdsub_tmpunit = Clause_new(dummy);
- remove_satisfied = false;
-}
-
-
-UnsoundSimpSolver::~UnsoundSimpSolver()
-{
- free(bwdsub_tmpunit);
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++)
- free(elimtable[i].eliminated[j]);
-}
-
-
-Var UnsoundSimpSolver::newVar(bool sign, bool dvar) {
- Var v = Solver::newVar(sign, dvar);
-
- if (use_simplification){
- n_occ .push(0);
- n_occ .push(0);
- occurs .push();
- frozen .push((char)false);
- touched .push(0);
- elim_heap.insert(v);
- elimtable.push();
- }
- return v; }
-
-
-
-bool UnsoundSimpSolver::solve(const vec<Lit>& assumps, bool do_simp, bool turn_off_simp) {
- vec<Var> extra_frozen;
- bool result = true;
-
- do_simp &= use_simplification;
-
- //if (do_simp){
- // Assumptions must be temporarily frozen to run variable elimination:
- for (int i = 0; i < assumps.size(); i++){
- Var v = var(assumps[i]);
-
- // If an assumption has been eliminated, remember it.
- if (isEliminated(v))
- remember(v);
-
- if (!frozen[v]){
- // Freeze and store.
- setFrozen(v, true);
- extra_frozen.push(v);
- } }
-
- result = eliminate(turn_off_simp);
- //}
- //
-
- if (result)
- result = Solver::solve(assumps);
-
- if (result) {
- extendModel();
- //#ifndef NDEBUG
- verifyModel();
- //#endif
- }
-
- if (do_simp)
- // Unfreeze the assumptions that were frozen:
- for (int i = 0; i < extra_frozen.size(); i++)
- setFrozen(extra_frozen[i], false);
-
- return result;
-}
-
-
-
-bool UnsoundSimpSolver::addClause(vec<Lit>& ps)
-{
- for (int i = 0; i < ps.size(); i++)
- if (isEliminated(var(ps[i])))
- remember(var(ps[i]));
-
- int nclauses = clauses.size();
-
- if (redundancy_check && implied(ps))
- return true;
-
- if (!Solver::addClause(ps))
- return false;
-
- if (use_simplification && clauses.size() == nclauses + 1){
- Clause& c = *clauses.last();
-
- subsumption_queue.insert(&c);
-
- for (int i = 0; i < c.size(); i++){
- assert(occurs.size() > var(c[i]));
- assert(!find(occurs[var(c[i])], &c));
-
- occurs[var(c[i])].push(&c);
- n_occ[toInt(c[i])]++;
- touched[var(c[i])] = 1;
- assert(elimtable[var(c[i])].order == 0);
- if (elim_heap.inHeap(var(c[i])))
- elim_heap.increase_(var(c[i]));
- }
- }
-
- return true;
-}
-
-
-void UnsoundSimpSolver::removeClause(Clause& c)
-{
- assert(!c.learnt());
-
- if (use_simplification)
- for (int i = 0; i < c.size(); i++){
- n_occ[toInt(c[i])]--;
- updateElimHeap(var(c[i]));
- }
-
- detachClause(c);
- c.mark(1);
-}
-
-
-bool UnsoundSimpSolver::strengthenClause(Clause& c, Lit l)
-{
- assert(decisionLevel() == 0);
- assert(c.mark() == 0);
- assert(!c.learnt());
- assert(find(watches[toInt(~c[0])], &c));
- assert(find(watches[toInt(~c[1])], &c));
-
- // FIX: this is too inefficient but would be nice to have (properly implemented)
- // if (!find(subsumption_queue, &c))
- subsumption_queue.insert(&c);
-
- // If l is watched, delete it from watcher list and watch a new literal
- if (c[0] == l || c[1] == l){
- Lit other = c[0] == l ? c[1] : c[0];
- if (c.size() == 2){
- removeClause(c);
- c.strengthen(l);
- }else{
- c.strengthen(l);
- remove(watches[toInt(~l)], &c);
-
- // Add a watch for the correct literal
- watches[toInt(~(c[1] == other ? c[0] : c[1]))].push(&c);
-
- // !! this version assumes that remove does not change the order !!
- //watches[toInt(~c[1])].push(&c);
- clauses_literals -= 1;
- }
- }
- else{
- c.strengthen(l);
- clauses_literals -= 1;
- }
-
- // if subsumption-indexing is active perform the necessary updates
- if (use_simplification){
- remove(occurs[var(l)], &c);
- n_occ[toInt(l)]--;
- updateElimHeap(var(l));
- }
-
- return c.size() == 1 ? enqueue(c[0]) && propagate() == NULL : true;
-}
-
-
-// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
-bool UnsoundSimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause)
-{
- merges++;
- out_clause.clear();
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(ps[j]) == var(qs[i]))
- if (ps[j] == ~qs[i])
- return false;
- else
- goto next;
- out_clause.push(qs[i]);
- }
- next:;
- }
-
- for (int i = 0; i < ps.size(); i++)
- if (var(ps[i]) != v)
- out_clause.push(ps[i]);
-
- return true;
-}
-
-
-// Returns FALSE if clause is always satisfied.
-bool UnsoundSimpSolver::merge(const Clause& _ps, const Clause& _qs, Var v)
-{
- merges++;
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
- const Lit* __ps = (const Lit*)ps;
- const Lit* __qs = (const Lit*)qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(__qs[i]) != v){
- for (int j = 0; j < ps.size(); j++)
- if (var(__ps[j]) == var(__qs[i]))
- if (__ps[j] == ~__qs[i])
- return false;
- else
- goto next;
- }
- next:;
- }
-
- return true;
-}
-
-
-void UnsoundSimpSolver::gatherTouchedClauses()
-{
- //fprintf(stderr, "Gathering clauses for backwards subsumption\n");
- int ntouched = 0;
- for (int i = 0; i < touched.size(); i++)
- if (touched[i]){
- const vec<Clause*>& cs = getOccurs(i);
- ntouched++;
- for (int j = 0; j < cs.size(); j++)
- if (cs[j]->mark() == 0){
- subsumption_queue.insert(cs[j]);
- cs[j]->mark(2);
- }
- touched[i] = 0;
- }
-
- //fprintf(stderr, "Touched variables %d of %d yields %d clauses to
- //check\n", ntouched, touched.size(), clauses.size());
- for (int i = 0; i < subsumption_queue.size(); i++)
- subsumption_queue[i]->mark(0);
-}
-
-
-bool UnsoundSimpSolver::implied(const vec<Lit>& c)
-{
- assert(decisionLevel() == 0);
-
- trail_lim.push(trail.size());
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) == l_True){
- cancelUntil(0);
- return false;
- }else if (value(c[i]) != l_False){
- assert(value(c[i]) == l_Undef);
- uncheckedEnqueue(~c[i]);
- }
-
- bool result = propagate() != NULL;
- cancelUntil(0);
- return result;
-}
-
-
-// Backward subsumption + backward subsumption resolution
-bool UnsoundSimpSolver::backwardSubsumptionCheck(bool verbose)
-{
- int cnt = 0;
- int subsumed = 0;
- int deleted_literals = 0;
- assert(decisionLevel() == 0);
-
- while (subsumption_queue.size() > 0 || bwdsub_assigns < trail.size()){
-
- // Check top-level assignments by creating a dummy clause and placing it in the queue:
- if (subsumption_queue.size() == 0 && bwdsub_assigns < trail.size()){
- Lit l = trail[bwdsub_assigns++];
- (*bwdsub_tmpunit)[0] = l;
- bwdsub_tmpunit->calcAbstraction();
- assert(bwdsub_tmpunit->mark() == 0);
- subsumption_queue.insert(bwdsub_tmpunit); }
-
- Clause& c = *subsumption_queue.peek(); subsumption_queue.pop();
-
- if (c.mark()) continue;
-
- if (verbose && verbosity >= 2 && cnt++ % 1000 == 0)
- reportf("subsumption left: %10d (%10d subsumed, %10d deleted literals)\r", subsumption_queue.size(), subsumed, deleted_literals);
-
- assert(c.size() > 1 || value(c[0]) == l_True); // Unit-clauses should have been propagated before this point.
-
- // Find best variable to scan:
- Var best = var(c[0]);
- for (int i = 1; i < c.size(); i++)
- if (occurs[var(c[i])].size() < occurs[best].size())
- best = var(c[i]);
-
- // Search all candidates:
- vec<Clause*>& _cs = getOccurs(best);
- Clause** cs = (Clause**)_cs;
-
- for (int j = 0; j < _cs.size(); j++)
- if (c.mark())
- break;
- else if (!cs[j]->mark() && cs[j] != &c){
- Lit l = c.subsumes(*cs[j]);
-
- if (l == lit_Undef)
- subsumed++, removeClause(*cs[j]);
- else if (l != lit_Error){
- deleted_literals++;
-
- if (!strengthenClause(*cs[j], ~l))
- return false;
-
- // Did current candidate get deleted from cs? Then check candidate at index j again:
- if (var(l) == best)
- j--;
- }
- }
- }
-
- return true;
-}
-
-
-bool UnsoundSimpSolver::asymm(Var v, Clause& c)
-{
- assert(decisionLevel() == 0);
-
- if (c.mark() || satisfied(c)) return true;
-
- trail_lim.push(trail.size());
- Lit l = lit_Undef;
- for (int i = 0; i < c.size(); i++)
- if (var(c[i]) != v && value(c[i]) != l_False)
- uncheckedEnqueue(~c[i]);
- else
- l = c[i];
-
- if (propagate() != NULL){
- cancelUntil(0);
- asymm_lits++;
- if (!strengthenClause(c, l))
- return false;
- }else
- cancelUntil(0);
-
- return true;
-}
-
-
-bool UnsoundSimpSolver::asymmVar(Var v)
-{
- assert(!frozen[v]);
- assert(use_simplification);
-
- vec<Clause*> pos, neg;
- const vec<Clause*>& cls = getOccurs(v);
-
- if (value(v) != l_Undef || cls.size() == 0)
- return true;
-
- for (int i = 0; i < cls.size(); i++)
- if (!asymm(v, *cls[i]))
- return false;
-
- return backwardSubsumptionCheck();
-}
-
-
-void UnsoundSimpSolver::verifyModel()
-{
- bool failed = false;
- int cnt = 0;
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int i = 0; i < elimtable.size(); i++)
- if (elimtable[i].order > 0)
- for (int j = 0; j < elimtable[i].eliminated.size(); j++){
- cnt++;
- Clause& c = *elimtable[i].eliminated[j];
- for (int k = 0; k < c.size(); k++)
- if (modelValue(c[k]) == l_True)
- goto next;
-
- reportf("unsatisfied clause: ");
- printClause(*elimtable[i].eliminated[j]);
- reportf("\n");
- failed = true;
- next:;
- }
-
- assert(!failed);
- reportf("Verified %d eliminated clauses.\n", cnt);
-}
-
-
-bool UnsoundSimpSolver::eliminateVar(Var v, bool fail, bool stop_unsoundness)
-{
- if (!fail && asymm_mode && !asymmVar(v)) return false;
-
- const vec<Clause*>& cls = getOccurs(v);
-
-// if (value(v) != l_Undef || cls.size() == 0) return true;
- if (value(v) != l_Undef) return true;
-
- // Split the occurrences into positive and negative:
- vec<Clause*> pos, neg;
- for (int i = 0; i < cls.size(); i++)
- (find(*cls[i], Lit(v)) ? pos : neg).push(cls[i]);
-
- // Check if number of clauses decreases:
- int cnt = 0;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v) && ++cnt > cls.size() + grow)
- return true;
-
- // Delete and store old clauses:
- setDecisionVar(v, false);
- elimtable[v].order = elimorder++;
- assert(elimtable[v].eliminated.size() == 0);
- for (int i = 0; i < cls.size(); i++){
- elimtable[v].eliminated.push(Clause_new(*cls[i]));
- removeClause(*cls[i]); }
-
- // Produce clauses in cross product:
- int top = clauses.size();
- vec<Lit> resolvent;
- for (int i = 0; i < pos.size(); i++)
- for (int j = 0; j < neg.size(); j++)
- if (merge(*pos[i], *neg[j], v, resolvent) && !addClause(resolvent))
- return false;
-
-
- if(!stop_unsoundness)
- {
- //abductive logic
- vec<Lit > resolvedClauses;
- for (int i = 0; i < pos.size(); i++) {
- for (int j = 0; j < pos.size(); j++) {
- if(i == j)
- continue;
- abductive_merge(*pos[i], *pos[j], v, resolvedClauses, true);
- if(!addClause(resolvedClauses))
- return false;
- }
- }
- //}
-
- resolvedClauses.clear();
- for (int i = 0; i < neg.size(); i++) {
- for (int j = 0; j < neg.size(); j++) {
- if(i == j)
- continue;
- abductive_neg_merge(*neg[i], *neg[j], v, resolvedClauses,true);
- if(!addClause(resolvedClauses))
- return false;
- }
- }
- }
-
- // DEBUG: For checking that a clause set is saturated with respect
- // to variable elimination. If the clause set is expected
- // to be saturated at this point, this constitutes an
- // error.
- if (fail){
- reportf("eliminated var %d, %d <= %d\n", v+1, cnt, cls.size());
- reportf("previous clauses:\n");
- for (int i = 0; i < cls.size(); i++){
- printClause(*cls[i]); reportf("\n"); }
- reportf("new clauses:\n");
- for (int i = top; i < clauses.size(); i++){
- printClause(*clauses[i]); reportf("\n"); }
- assert(0); }
-
- return backwardSubsumptionCheck();
-}
-
-
-void UnsoundSimpSolver::remember(Var v)
-{
- assert(decisionLevel() == 0);
- assert(isEliminated(v));
-
- vec<Lit> clause;
-
- // Re-activate variable:
- elimtable[v].order = 0;
- setDecisionVar(v, true); // Not good if the variable wasn't a decision variable before. Not sure how to fix this right now.
-
- if (use_simplification)
- updateElimHeap(v);
-
- // Reintroduce all old clauses which may implicitly remember other clauses:
- for (int i = 0; i < elimtable[v].eliminated.size(); i++){
- Clause& c = *elimtable[v].eliminated[i];
- clause.clear();
- for (int j = 0; j < c.size(); j++)
- clause.push(c[j]);
-
- remembered_clauses++;
- check(addClause(clause));
- free(&c);
- }
-
- elimtable[v].eliminated.clear();
-}
-
-
-void UnsoundSimpSolver::extendModel()
-{
- vec<Var> vs;
-
- // NOTE: elimtable.size() might be lower than nVars() at the moment
- for (int v = 0; v < elimtable.size(); v++)
- if (elimtable[v].order > 0)
- vs.push(v);
-
- sort(vs, ElimOrderLt(elimtable));
-
- for (int i = 0; i < vs.size(); i++){
- Var v = vs[i];
- Lit l = lit_Undef;
-
- for (int j = 0; j < elimtable[v].eliminated.size(); j++){
- Clause& c = *elimtable[v].eliminated[j];
-
- for (int k = 0; k < c.size(); k++)
- if (var(c[k]) == v)
- l = c[k];
- else if (modelValue(c[k]) != l_False)
- goto next;
-
- assert(l != lit_Undef);
- model[v] = lbool(!sign(l));
- break;
-
- next:;
- }
-
- if (model[v] == l_Undef)
- model[v] = l_True;
- }
-}
-
-
-bool UnsoundSimpSolver::eliminate(bool turn_off_elim)
-{
- if (!ok || !use_simplification)
- return ok;
-
- // Main simplification loop:
- //assert(subsumption_queue.size() == 0);
- //gatherTouchedClauses();
- while (subsumption_queue.size() > 0 || elim_heap.size() > 0){
-
- //fprintf(stderr, "subsumption phase: (%d)\n", subsumption_queue.size());
- if (!backwardSubsumptionCheck(true))
- return false;
-
- //fprintf(stderr, "elimination phase:\n (%d)", elim_heap.size());
- for (int cnt = 0; !elim_heap.empty(); cnt++){
- bool stop_unsoundness = true;
- if(cnt > log(nClauses())) {
- stop_unsoundness = false;
- //return true;
- }
-
- Var elim = elim_heap.removeMin();
-
- if (verbosity >= 2 && cnt % 100 == 0)
- reportf("elimination left: %10d\r", elim_heap.size());
-
- if (!frozen[elim] && !eliminateVar(elim, false, stop_unsoundness))
- return false;
- }
-
- assert(subsumption_queue.size() == 0);
- gatherTouchedClauses();
- }
-
- // Cleanup:
- cleanUpClauses();
- order_heap.filter(VarFilter(*this));
-
-#ifdef INVARIANTS
- // Check that no more subsumption is possible:
- reportf("Checking that no more subsumption is possible\n");
- for (int i = 0; i < clauses.size(); i++){
- if (i % 1000 == 0)
- reportf("left %10d\r", clauses.size() - i);
-
- assert(clauses[i]->mark() == 0);
- for (int j = 0; j < i; j++)
- assert(clauses[i]->subsumes(*clauses[j]) == lit_Error);
- }
- reportf("done.\n");
-
- // Check that no more elimination is possible:
- reportf("Checking that no more elimination is possible\n");
- for (int i = 0; i < nVars(); i++)
- if (!frozen[i]) eliminateVar(i, true, true);
- reportf("done.\n");
- checkLiteralCount();
-#endif
-
- // If no more simplification is needed, free all simplification-related data structures:
- if (turn_off_elim){
- use_simplification = false;
- touched.clear(true);
- occurs.clear(true);
- n_occ.clear(true);
- subsumption_queue.clear(true);
- elim_heap.clear(true);
- remove_satisfied = true;
- }
-
-
- return true;
-}
-
-
-void UnsoundSimpSolver::cleanUpClauses()
-{
- int i , j;
- vec<Var> dirty;
- for (i = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1){
- Clause& c = *clauses[i];
- for (int k = 0; k < c.size(); k++)
- if (!seen[var(c[k])]){
- seen[var(c[k])] = 1;
- dirty.push(var(c[k]));
- } }
-
- for (i = 0; i < dirty.size(); i++){
- cleanOcc(dirty[i]);
- seen[dirty[i]] = 0; }
-
- for (i = j = 0; i < clauses.size(); i++)
- if (clauses[i]->mark() == 1)
- free(clauses[i]);
- else
- clauses[j++] = clauses[i];
- clauses.shrink(i - j);
-}
-
-
-//=================================================================================================
-// Convert to DIMACS:
-
-
-void UnsoundSimpSolver::toDimacs(FILE* f, Clause& c)
-{
- if (satisfied(c)) return;
-
- for (int i = 0; i < c.size(); i++)
- if (value(c[i]) != l_False)
- fprintf(f, "%s%d ", sign(c[i]) ? "-" : "", var(c[i])+1);
- fprintf(f, "0\n");
-}
-
-
-void UnsoundSimpSolver::toDimacs(const char* file)
-{
- assert(decisionLevel() == 0);
- FILE* f = fopen(file, "wr");
- if (f != NULL){
-
- // Cannot use removeClauses here because it is not safe
- // to deallocate them at this point. Could be improved.
- int cnt = 0;
- for (int i = 0; i < clauses.size(); i++)
- if (!satisfied(*clauses[i]))
- cnt++;
-
- fprintf(f, "p cnf %d %d\n", nVars(), cnt);
-
- for (int i = 0; i < clauses.size(); i++)
- toDimacs(f, *clauses[i]);
-
- fprintf(stderr, "Wrote %d clauses...\n", clauses.size());
- }else
- fprintf(stderr, "could not open file %s\n", file);
-}
-
-
-// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
-bool UnsoundSimpSolver::abductive_merge(const Clause& _ps,
- const Clause& _qs,
- Var v,
- vec<Lit>& out_clause, bool s) {
- merges++;
- out_clause.clear();
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
-
- for (int i = 0; i < qs.size(); i++){
- if (var(qs[i]) != v)
- out_clause.push(qs[i]);
- }
-
- for (int j = 0; j < ps.size(); j++) {
- if(var(ps[j]) != v)
- out_clause.push(ps[j]);
- }
-
- return true;
-} //end of abductive_merge()
-
-// Returns FALSE if clause is always satisfied ('out_clause' should not be used).
-bool UnsoundSimpSolver::abductive_neg_merge(const Clause& _ps,
- const Clause& _qs,
- Var v, vec<Lit>& out_clause, bool s) {
- merges++;
- out_clause.clear();
-
- bool ps_smallest = _ps.size() < _qs.size();
- const Clause& ps = ps_smallest ? _qs : _ps;
- const Clause& qs = ps_smallest ? _ps : _qs;
-
- //if(s) {
- for (int i = 0; i < qs.size(); i++){
- if (var(qs[i]) != v)
- out_clause.push(qs[i]);
- }
- //}
- //else {
- for (int j = 0; j < ps.size(); j++) {
- if(var(ps[j]) != v)
- out_clause.push(ps[j]);
- }
- //}
- return true;
-} //end of abductive_merge()
-};
+++ /dev/null
-/****************************************************************************
-MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson
-
-Permission is hereby granted, free of charge, to any person obtaining
-a copy of this software and associated documentation files (the
-"Software"), to deal in the Software without restriction, including
-without limitation the rights to use, copy, modify, merge, publish,
-distribute, sublicense, and/or sell copies of the Software, and to
-permit persons to whom the Software is furnished to do so, subject to
-the following conditions:
-
-The above copyright notice and this permission notice shall be
-included in all copies or substantial portions of the Software.
-
-THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
-EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
-MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
-NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
-LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
-OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
-WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-***************************************************************************/
-
-#ifndef UnsoundSimpSolver_h
-#define UnsoundSimpSolver_h
-
-#include <cstdio>
-
-#include "../mtl/Queue.h"
-#include "../core/Solver.h"
-
-
-namespace MINISAT {
-
-class UnsoundSimpSolver : public Solver {
- public:
- // Constructor/Destructor:
- //
- UnsoundSimpSolver();
- ~UnsoundSimpSolver();
-
- // Problem specification:
- //
- Var newVar (bool polarity = true, bool dvar = true);
- bool addClause (vec<Lit>& ps);
-
- // Variable mode:
- //
- void setFrozen (Var v, bool b); // If a variable is frozen it will not be eliminated.
-
- // Solving:
- //
- bool solve (const vec<Lit>& assumps, bool do_simp = true, bool turn_off_simp = false);
- bool solve (bool do_simp = true, bool turn_off_simp = true);
- bool eliminate (bool turn_off_elim = false); // Perform variable elimination based simplification.
-
- // Generate a (possibly simplified) DIMACS file:
- //
- void toDimacs (const char* file);
-
- // Mode of operation:
- //
- int grow; // Allow a variable elimination step to grow by a number of clauses (default to zero).
- bool asymm_mode; // Shrink clauses by asymmetric branching.
- bool redundancy_check; // Check if a clause is already implied. Prett costly, and subsumes subsumptions :)
-
- // Statistics:
- //
- int merges;
- int asymm_lits;
- int remembered_clauses;
-
-// protected:
- public:
-
- // Helper structures:
- //
- struct ElimData {
- int order; // 0 means not eliminated, >0 gives an index in the elimination order
- vec<Clause*> eliminated;
- ElimData() : order(0) {} };
-
- struct ElimOrderLt {
- const vec<ElimData>& elimtable;
- ElimOrderLt(const vec<ElimData>& et) : elimtable(et) {}
- bool operator()(Var x, Var y) { return elimtable[x].order > elimtable[y].order; } };
-
- struct ElimLt {
- const vec<int>& n_occ;
- ElimLt(const vec<int>& no) : n_occ(no) {}
- int cost (Var x) const { return n_occ[toInt(Lit(x))] * n_occ[toInt(~Lit(x))]; }
- bool operator()(Var x, Var y) const { return cost(x) < cost(y); } };
-
-
- // Solver state:
- //
- int elimorder;
- bool use_simplification;
- vec<ElimData> elimtable;
- vec<char> touched;
- vec<vec<Clause*> > occurs;
- vec<int> n_occ;
- Heap<ElimLt> elim_heap;
- Queue<Clause*> subsumption_queue;
- vec<char> frozen;
- int bwdsub_assigns;
-
- // Temporaries:
- //
- Clause* bwdsub_tmpunit;
-
- // Main internal methods:
- //
- bool asymm (Var v, Clause& c);
- bool asymmVar (Var v);
- void updateElimHeap (Var v);
- void cleanOcc (Var v);
- vec<Clause*>& getOccurs (Var x);
- void gatherTouchedClauses ();
- bool merge (const Clause& _ps, const Clause& _qs, Var v, vec<Lit>& out_clause);
- bool merge (const Clause& _ps, const Clause& _qs, Var v);
- bool abductive_merge (const Clause& _ps,
- const Clause& _qs,
- Var v, vec<Lit >& out_clauses, bool s=true);
- bool abductive_neg_merge (const Clause& _ps,
- const Clause& _qs,
- Var v, vec<Lit>& out_clause, bool s=true);
-
- bool backwardSubsumptionCheck (bool verbose = false);
- bool eliminateVar (Var v, bool fail = false,
- bool stop_unsoundness=false);
- void remember (Var v);
- void extendModel ();
- void verifyModel ();
-
- void removeClause (Clause& c);
- bool strengthenClause (Clause& c, Lit l);
- void cleanUpClauses ();
- bool implied (const vec<Lit>& c);
- void toDimacs (FILE* f, Clause& c);
- bool isEliminated (Var v) const;
-
-};
-
-
-//=================================================================================================
-// Implementation of inline methods:
-
-inline void UnsoundSimpSolver::updateElimHeap(Var v) {
- if (elimtable[v].order == 0)
- elim_heap.update(v); }
-
-inline void UnsoundSimpSolver::cleanOcc(Var v) {
- assert(use_simplification);
- Clause **begin = (Clause**)occurs[v];
- Clause **end = begin + occurs[v].size();
- Clause **i, **j;
- for (i = begin, j = end; i < j; i++)
- if ((*i)->mark() == 1){
- *i = *(--j);
- i--;
- }
- //occurs[v].shrink_(end - j); // This seems slower. Why?!
- occurs[v].shrink(end - j);
-}
-
-inline vec<Clause*>& UnsoundSimpSolver::getOccurs(Var x) {
- cleanOcc(x); return occurs[x]; }
-
-inline bool UnsoundSimpSolver::isEliminated (Var v) const { return v < elimtable.size() && elimtable[v].order != 0; }
-inline void UnsoundSimpSolver::setFrozen (Var v, bool b) { frozen[v] = (char)b; if (b) { updateElimHeap(v); } }
-inline bool UnsoundSimpSolver::solve (bool do_simp, bool turn_off_simp) { vec<Lit> tmp; return solve(tmp, do_simp, turn_off_simp); }
-
-//=================================================================================================
-#endif
-};