From: Francis Russell Date: Fri, 2 Dec 2011 17:31:09 +0000 (+0000) Subject: Replace instances of eqnarray with align. X-Git-Url: https://git.unchartedbackwaters.co.uk/w/?a=commitdiff_plain;h=HEAD;p=francis%2Frelativity.git Replace instances of eqnarray with align. --- diff --git a/relat10.tex b/relat10.tex index 63c5f1d..dc7f123 100644 --- a/relat10.tex +++ b/relat10.tex @@ -1093,12 +1093,12 @@ the relative orientation in space of the co-ordinate systems indicated in the diagram (Fig \ref{fig:2}), this problem is solved by means of the equations: -\begin{eqnarray*} -x' &=& \frac{x-vt}{\sqrt{I-\frac{v^2}{c^2}}} \\ -y' &=& y \\ -z' &=& z \\ -t' &=& \frac{t-\frac{v}{c^2}x}{\sqrt{I-\frac{v^2}{c^2}}} \\ -\end{eqnarray*} +\begin{align*} +x' &= \frac{x-vt}{\sqrt{I-\frac{v^2}{c^2}}} \\ +y' &= y \\ +z' &= z \\ +t' &= \frac{t-\frac{v}{c^2}x}{\sqrt{I-\frac{v^2}{c^2}}} \\ +\end{align*} \noindent This system of equations is known as the ``Lorentz transformation."\footnotemark @@ -1107,12 +1107,12 @@ basis the tacit assumptions of the older mechanics as to the absolute character of times and lengths, then instead of the above we should have obtained the following equations: -\begin{eqnarray*} -x' &=& x - vt \\ -y' &=& y \\ -z' &=& z \\ -t' &=& t \\ -\end{eqnarray*} +\begin{align*} +x' &= x - vt \\ +y' &= y \\ +z' &= z \\ +t' &= t \\ +\end{align*} \noindent This system of equations is often termed the ``Galilei transformation." The Galilei transformation can be obtained from the @@ -1136,10 +1136,10 @@ relation between $x'$ and $t'$. In point of fact, if we substitute for $x$ the value $ct$ in the first and fourth equations of the Lorentz transformation, we obtain: -\begin{eqnarray*} -x' &=& \frac{(c-v)t}{\sqrt{I-\frac{v^2}{c^2}}} \\ -t' &=& \frac{(I-\frac{v}{c})t}{\sqrt{I-\frac{v^2}{c^2}}} -\end{eqnarray*} +\begin{align*} +x' &= \frac{(c-v)t}{\sqrt{I-\frac{v^2}{c^2}}} \\ +t' &= \frac{(I-\frac{v}{c})t}{\sqrt{I-\frac{v^2}{c^2}}} +\end{align*} \noindent from which, by division, the expression @@ -1175,10 +1175,10 @@ lie with respect to $K$ at a particular time $t$ of the system $K$. By means of the first equation of the Lorentz transformation the values of these two points at the time $t = 0$ can be shown to be -\begin{eqnarray*} -x_{\mbox{(begining of rod)}} &=& 0 \sqrt{I-\frac{v^2}{c^2}} \\ -x_{\mbox{(end of rod)}} &=& 1 \sqrt{I-\frac{v^2}{c^2}} -\end{eqnarray*} +\begin{align*} +x_{\mbox{(begining of rod)}} &= 0 \sqrt{I-\frac{v^2}{c^2}} \\ +x_{\mbox{(end of rod)}} &= 1 \sqrt{I-\frac{v^2}{c^2}} +\end{align*} ~ \noindent the distance between the points being $\sqrt{I-v^2/c^2}$. @@ -2649,10 +2649,12 @@ the table. We call these two numbers the co-ordinates of the surface of the table (Gaussian co-ordinates). For example, the point $P$ in the diagram has the Gaussian co-ordinates $u=3$, $v=1$. Two neighbouring points $P$ and $P_1$ on the surface then correspond to the co-ordinates -\begin{eqnarray*} -P: & u ~~,~~v \\ -P': & u + du , v + dv -\end{eqnarray*} + +\begin{align*} +P:&~u,~v \\ +P':&~u + du,~v + dv +\end{align*} + where $du$ and $dv$ signify very small numbers. In a similar manner we may indicate the distance (line-interval) between $P$ and $P_1$, as measured with a little rod, by means of the very small number $ds$. Then @@ -3650,12 +3652,14 @@ right-hand side. We can characterise the Lorentz transformation still more simply if we introduce the imaginary $\sqrt{-I} \cdot ct$ in place of $t$, as time-variable. If, in accordance with this, we insert -\begin{eqnarray*} - x_1 & = & x \\ - x_2 & = & y \\ - x_3 & = & z \\ - x_4 & = & \sqrt{-I} \cdot ct -\end{eqnarray*} + +\begin{align*} + x_1 & = x \\ + x_2 & = y \\ + x_3 & = z \\ + x_4 & = \sqrt{-I} \cdot ct +\end{align*} + and similarly for the accented system $K^1$, then the condition which is identically satisfied by the transformation can be expressed thus: