From 6768799b82650b882fd66ae52de8b8534343d4f8 Mon Sep 17 00:00:00 2001 From: Francis Russell Date: Wed, 13 Feb 2013 19:01:00 +0000 Subject: [PATCH] Add slides on domain of variability. --- presentation.tex | 69 +++++++++++++++++++++++++++++++++++++++++++++--- 1 file changed, 66 insertions(+), 3 deletions(-) diff --git a/presentation.tex b/presentation.tex index d056f77..b569399 100644 --- a/presentation.tex +++ b/presentation.tex @@ -61,7 +61,7 @@ understand the associated \emph{domains of variability}. \item Variability in the problem description should be expressible in the DSL, making it practical to use a DSL based code generator across -multple problems. +multiple problems. \item Variability in the implementation can be explored via alternative strategies for code generation implemented inside a DSL compiler. @@ -72,7 +72,7 @@ strategies for code generation implemented inside a DSL compiler. \frame{ -\frametitle{Input variability in UFL (Unified Form Language)} +\frametitle{Case Study: Unified Form Language} \begin{itemize} @@ -96,11 +96,74 @@ a(u,v) = \int_\Omega \nabla u(x) \cdot \nabla v(x)\,dx \frame{ -\frametitle{Implementation variablity in FFC} +\frametitle{Input variability in the Unified Form Language} + +\begin{itemize} + +\item UFL can be used to describe problems defined by PDEs once re-written into + a weak variational form. For example: + \begin{itemize} + \item Heat propagation + \item Shallow water equations + \item Navier Stokes + \end{itemize} + +\item UFL permits significant parameterisation of the specified problems: + \begin{itemize} + \item Dimensionality e.g. 2D or 3D. + \item Basis function family e.g. Lagrange, Raviart-Thomas. + \item Polynomial order of basis functions. + \end{itemize} + +\end{itemize} + +The ability to automatically apply the same analyses and optimisations over any +problem specified in the DSL provides significant advantages in development. + +} + +\frame{ + +\frametitle{Implementation variability in the FEniCS Form Compiler} + +\begin{itemize} + + \item The FEniCS Form Compiler (FFC) takes discretised PDEs written in UFL + and generates C++ to evaluate them on an arbitrary mesh cell. + + \item FFC has permitted the exploration of alternative implementation + strategies for evaluating local assembly integrals: + + \begin{description} + + \item[Quadrature] Takes a weighted sum of the function over the region + being integrated over. + + \item[Tensor Contraction] Re-writes as a contraction between + geometry-dependent and independent tensors. + + \end{description} + + \item Further extensions to the tensor contraction technique have explored + optimisations that would be impossible to achieve in any hand-written + implementation. +\end{itemize} + +In this case, the usage of a DSL permits exploration of the domain of +variability in the implementation through otherwise inaccessible techniques. } +\frame{ + +\frametitle{The Domain of Variability in ONETEP} +\centering +\scalebox{15.0}{ +$\emptyset$ +} + +} \end{document} -- 2.47.3